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Abstract 

Sustainable natural systems require energy. This requirement 

of energy is proportional to the activity they manifest. In a 

scalable self-similar artificial system, information gateways 

at every level must limit the information/activity to-from 

their subsystems based on computational algorithms.  We 

discuss some of the implemented algorithms in these 

gateways for focusing attention to the most active 

component. We validate that attention switching is an 

emergent property of such a system and happens when there 

is goal-directed behavior within the system or an agent. We 

describe the structural elements that are needed to deal with 

the bottom-up and top-down phenomenon and model the 

behavior using DEVS-based hierarchical system capable of 

focusing attention. We define resource-constrained complex 

intelligent dynamical system (RCIDS) and summarize 

various application areas that can leverage these concepts. 

 

1. INTRODUCTION 

 Complex natural systems (CNS) bear self-similar 

properties and various studies show that they are self-similar 

[1]. Nature supports hierarchical architecture. At each level 

of the hierarchy in CNS, the information is processed and 

filtered and then transferred to the higher level. Pinker [9] 

provides the fundamental guidelines of an artificial system 

that tries to imitate natural systems. 

 “Any intelligent agent incarnated in matter, working in 

real-time and subset to the laws of thermodynamics must be 

restricted in its access to information. Only the information 

that is relevant should be allowed in.” 

 

 When scalability and measurement of intelligence is 

viewed from the Computer Science perspective, then 

intelligent processing can be viewed as a subset of universal 

computation. So, intelligence is measured by standard 

computational complexity. Intelligent systems are 

organization of algorithms operating in n-tier hierarchy, each 

of which may become a bottleneck for growth. The notion of 

intelligence is multi-faceted, subjective and adding 

“intelligence” in a system always has a cost, whether 

computational time, energy, resources or knowledge. Given 

the apparently complexity of such a system at both the 

design/compile time or at run-time, how does one focus its 

attention at a specific feature of such system? Attention is 

defined as the capacity to direct one’s resources (or mind in 

psychological terms) preferentially to an object from a set of 

complex stimuli, thereby reducing their footprint. While 

attention switching occurs naturally, the focus of attention is 

a deliberate, top-down phenomenon guided by a goal-

directed behavior.  

 An Algorithm in such a system is considered practical if 

it completes in polynomial execution time proportional to the 

input data. Likewise, a problem is tractable if it has a 

polynomial algorithm solution. However, there are 

intractable problems also known as NP complete problems 

that have non-deterministic polynomial execution time. 

Tsotsos et.al showed that the problem of searching a visual 

space is one such intractable problem when the targets are not 

known in advance but becomes a tractable one if a target is 

given [2-6]. In other words, the top-down behavior of 

knowing a target in advance, helps to “focus” attention as it 

switches from one object to another object. 

 The human cognitive ability to attend has been widely 

researched in cognitive and perceptual psychology, 

neurophysiology and in computational systems and the core 

issue has been of Information Reduction [3]. This capacity to 

attend has been computationally implemented as a search-

limiting heuristic in early AI literature. Various cognitive 

architectures implemented information reduction in different 

ways, mostly to limit the “working memory” component but 

still fail to explicitly discuss human capacity, bottlenecks and 

resource limits [3]. Computational models of Attention [3] 

can be specialized into four hypotheses: 

1. Salience Map: Problem is represented as a set of feature 

maps of various stimuli. Saliency map implements a 

Winner Take All (WTA) algorithm that combines 

information from various feature maps resulting into one 

salient outcome and then inhibiting it so that the next 

salient feature gains attention.  

2. Temporal Tagging: Attentional mechanism binds all 

those neurons whose activity relates to the relevant 

features of a single object, which form a transient short-

term memory. The neuronal system is modeled as a 

dynamical system. 

3. Emergent Attention: A property of large assemblies of 

neurons engaged in competitive interactions and 
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selection is the combined result of local dynamics and 

top-down biases. 

4. Selective Routing: Feed-forward and feedback networks 

illuminate overlapping neural paths in presence of 

localized inputs. 

 

 Styles [7] suggested that attentional behavior emerges as 

a result of complex underlying processing in brain and 

Shipp’s review [8] concludes that this emergent attention is 

the most likely hypothesis.  

 An attempt to design such an attention-management 

architecture is presented in this paper and is based on Mittal’s 

Master’s thesis [10]. We define a resource-constrained 

scalable complex intelligent dynamical system (RCIDS) with 

the following properties: 

1. Resource constrained environment: In the modeled 

connectionist system, network bandwidth, and 

computational resources available to any sensor are 

finite. The constraints may take the form of energy, time, 

knowledge, control, etc. that are available to any 

processing component 

2. Complex: Presence of emergent behavior that is 

irreducible to any specific component in the system. 

Attention switching is an emergent phenomena. 

3. Intelligent: The capacity to process sensory input from 

the environment and act on the sensory input by 

processing the information to pursue a goal-oriented 

behavior 

4. Dynamical: The behavior is temporal in nature. The 

system has emergent response and stabilization periods. 

5. System: The model conforms to systems theoretical 

principles. 

  

 The proposed RCIDS architecture is a prototype of an 

intelligent system capable of focusing attention and directing 

resources to an area showing high activity. Any natural or 

artificial system that has finite amount of resources and has a 

requirement to focus attention/resources to a region of high 

“activity” can be mapped onto this architecture. Any artificial 

system is composed of sensors, a data/information processing 

engine capable of decision making and selective control, and 

actuators. This work investigates the capability to 

acknowledge the detected activity, worthy of attention for a 

given task-at-hand, register it and then releasing commands 

to the appropriate actuators. Following are some of the 

enterprise system of systems (SoS) where this system could 

be put to test: 

a) Human decision-making System or Decision aides 

b) Autonomous systems & Robotic systems 

c) Applications involving Hierarchically distributed 

Genetic Algorithms 

d) Learning Management systems 

e) Learning Health systems 

 

 In this paper, we show by simulation that attention 

switching is an emergent property of a resource-constrained 

system and goal-directed behavior (implemented as various 

algorithms) results in focusing attention to a component 

showing a higher activity which in turn uses more energy. 

Section 2 provides a scientific background behind our 

approach. Section 3 discusses the model system design. 

Section 4 presents the model abstractions and theoretical 

analysis of various sampling algorithms. Section 5 discusses 

simulation results. Section 6 summarizes the article. 

 

2. APPROACH 

 In order to display an intelligent reactive time-critical 

responsible behavior, it is imperative to have a “reasoning” 

component capable of making selective decisions, 

knowledge refinements, resource allocations and the 

involved attention switching. Emergence of hierarchical 

structures from bottom-up phenomena occurs in natural 

complex systems and emergence of clusters and hubs appears 

to be aided by top-down phenomena [1]. Such systems are 

self-similar or fractal in nature and often studied as complex 

adaptive systems [11]. When viewed from systems 

perspective, the decision making is goal-oriented and follows 

the top-down approach while the information flows 

according to the bottom-up approach.  

We make some bold assumptions to limit the scope of 

our problem and focus only on the essential features of 

RCIDS. These abstractions are necessary to address the 

attention focusing problem, independent of the domain 

knowledge. If applied to a specific domain, each node in such 

SoS will then subscribe to its utility with respect to the task-

at-hand. Following are the assumptions made: 

1. The nature of base activity 

2. Knowledge/memory structure in any computer-based 

intelligent system 

3. Impact of knowledge activation in attention switching 

4. Hierarchical structure of the system 

5. Channelization of top-down control with some 

fundamental selective tuning algorithms at decision 

making gateways. 

 

With respect to the model and the system architecture, 

following are some of the concepts that we leverage to build 

an abstract RCIDS: 

 

2.1.1. Concept of Activity and its relationship with 

Energy 

 Energy is the general concept that represents the physical 

cost of action in the real world. Information is the general 

concept that models how systems decide on, manage, and 

control their actions [11]. As in Figure 1 a), information and 

energy are two key concepts whose interaction is well 

understood in the following common sense manner:  On one 

hand, information processing takes energy, On the other 



hand, getting that energy requires information processing to 

find and consume energy-bearing resources.  The information 

processing that a system can do is limited by the energy 

available to it.  However, to increase the amount of energy 

available to it, a system must use its information processes – 

but these use some of that energy. A SoS is sustainable in the 

environment if the energy expended by the SoS to meet 

behavioral requirements is matched by the energy accruing to 

it by satisfying the requirements. 

 Activity is a measure of system behavior that allows 

estimating how much energy a behavior needs to consume.  

Intuitively, the more active that a component is, the more 

energy it requires to maintain its activity. Zeigler [12, 13] 

postulated the linear allocation strategy:: 

𝐸𝑖 = 𝑎𝐴𝑖 
 

where Ei and Ai are the energy allocated and activity, resp. of 

the component with subscript i and a is the proportionality 

factor. Assume that each pattern sensed by the system 

requires a corresponding distribution of activities among its 

components to be properly sensed.  Then [12] shows that the 

potential to save total energy using the linear allocation 

strategy is determined by the activity disparity, which is the 

difference between the maximum and minimum activity of 

the components, To achieve the linear allocation condition 

required coordination mechanisms such as the attention 

focusing architectures to be discussed. 
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Figure 1. Activity concept linking information and energy 

2.1.2. Sampling algorithm at 

information/knowledge gateways 

 The Sampling algorithm is an abstraction of a decision 

making entity at a particular level and has a top-down 

influence. It works on the Activity concept manifested by any 

processing agent/sub-system. The underlying logic is an 

adaptation of Winner Take All (WTA) algorithm [5]. It is 

executed by a resource-allocation manager or a decision 

making entity that has a sensitivity threshold (outQuant). It is 

implemented as: 

1. Get new activity value (At) 

2. Calculate the difference with previously stored 

activity as dA = At – At-1 

3. Update the sumt parameter which reflects the total 

amount of resources being used by all the sensors. 

4. Calculate the difference with previously 

accumulated sum as dSum =  sumt -sumt-1 

5. if dSum > outQuant { 

1. sumt-1 = sumt  

2. Revise Sampling Rate SRt based on either of 

a. Normalized-Sum (NS) Rule  

b. Normalized-Max (NM) Rule 

c. Tunable Alfa-Beta (TA) Rule  

3. Send new sampling rates to the sensors. 

4. SRt-1 = SRt 

5. Repeat indefinitely 

 

 In this article, we will show the effect of NS, NM, TA 

sampling algorithms implemented at the resource allocation 

gateways in the RCIDS model. To minimize energy 

consumption, the information gateways capable of resource 

allocation “focus” attention at components displaying 

abnormal activity. 

 

3. MODEL-SYSTEM DESIGN 

 We develop an architecture using DEVS systems 

engineering principles [18]. We develop a hierarchical model 

analogous to a geographical structure of a country, states, 

counties, cities and surveillance-areas. 

 

3.1. Model  

 The system is designed in a top-down manner, where the 

top level is defined as the geographical region within a 

country. A country is made up many geographical states. A 

State is made of many counties. County is made of many 

cities. City is made of sensory areas, each with a finite area. 

Each level of hierarchy displays a certain “activity” as is 

evaluated at each level. Resources and the allocation of 

resources are proportional to the area. Each sensory-area is 

modeled as a Cell-grid and composed of various cells (eg. 

ranging from 50 to 300). Cell stores “resource” (value 

between 1 and 100) and may turn active stochastically, 

dependent on the resource value. When Cell is active, it 

utilizes resources and becomes passive when resource 

amount to zero. Activity of a sensor-area is defined as the 

cumulative number of active cells in that area. Sensor-area is 

provided with Sensor and a Rate Estimator (RE). RE acts as 

sensor’s decision maker. Sensor has a variable sampling rate, 

a maximum sampling rate, an activity-detection threshold as 

managed by RE. City is provided a Sampling Manager (also 

referred as Resource-allocation Manager [RAM]) that 

allocates new sampling rate to sensors underneath the 

hierarchy based on the city’s activity. 



 An abnormal activity is defined as an activity that has its 

value greater than the threshold activity as pre-encoded for 

the sensor. Each city area has a certain activity level and the 

sensors are tuned to perform at a default level if the city 

activity level is below a certain threshold. If the activity level 

increases over this threshold then the sensor also increases its 

sampling rate so as to process the more information from this 

increased activity area. The sensor is provided with a 

capability to modify its threshold so that it can be sensitive or 

coarse. It may be done externally by an allocation-manager 

(e.g., RAM) that maintains balance between the sensor’s 

allocation of resources. This manager also has the current 

statistics about all the sensors working in different cities 

within a state (highly simplified situation). The basic job of 

this manager is to modulate the total resources available with 

it among the sensors assigned to different cities, 

implementing a zero-sum game. Explicitly, each county will 

have a manager to supervise and distribute the total resources 

among the sensors and report the collective usage to its 

superior level. Though this manager has the capability to set 

the threshold of the individual sensors it is not mandatory to 

provide this functionality.  

 Figure 2 shows a block diagram of the system under 

discussion containing only one level. It depicts a sensor 

system (composed of sensor and its RE) interacting with 

Resource Allocation Manager (RAM). The current Sampling 

rate is communicated to RAM and the sampled data is 

communicated to the Data-driven Decision Maker (DDM) 

which processes the data and makes decisions about the 

sensor activity mode based on the goals of the system at this 

particular level. The DEVS state machine for Sensor is shown 

in Figure 3. 

 

3.2. System architecture and design 

 In reality, the system is actually a multi-level system 

where the information flows upwards and the allocated 

resources flow downwards towards the sensors. The 

communication is done using the network (wireless, wired or 

radio) channel as the sensors are distributed in real space.  A 

typical hierarchical system is shown in Figure 4 and is called 

Adaptive Sensor Net (AdsNet) [10]. The hierarchy enforces 

the information filtering as it travels up the hierarchy. Having 

described the semantics of the problem-at-hand, the use of 

System Entity Structure (SES) formalism [14] comes handy 

at this stage (Figure 4) to describe the structure. 

 

 

 
 

Figure 2. System model for a single level architecture 

 

 

 
 

Figure 3. DEVS State machine for Sensor 

behavior  
Figure 4. SES for AdsNet System 



 

 
Figure 5. Sensor Estimator Pair 

 
Figure 6. Top level view of a State constituting Counties 

 Various sensors are distributed in the area along with the 

local RAMs. This forms the periphery of the system. The 

demand for the resources travels upwards and the resources 

to address the “important” and “crucial” demands are 

addressed while maintaining a zero-sum game. 

 Table 2 lists various components in the system 

architecture and their role. For detailed DEVS behavior 

specifications, refer Mittal’s thesis [10].  

 RE is a realization of context sensitivity guided by task-

directed biasing. Every sensor is provided with a RE to 

validate the results of the sensor. Figure 5 shows the DEVS 

realization of City structure (realized from SES shown in 

Figure 4). For illustration, only one Sensor-RE pair is shown, 

which is coupled to a Surveillance Area comprising of 180 

cells. Figure 6 shows three counties under the control of a 

single Attention Manager (also called Sampling Manager 

[RAM] at the County level), which assigns maximum 

allocation rate to counties. The manager may be considered a 

communication backbone as well that distributes bandwidth 

among different counties proportional to their total activity.  

 RAM is not responsible for how the resources are 

distributed inside the county and is totally ignorant of the 

structure inside the counties. The manager sees the counties 

as they appear at this level, a black-box. Each county shown 

above has a different behavior and is not identical to other 

counties in terms of cells. Each level has a different loss 

factor of how information gets transferred to the sensors. 

 

     Table 2. Component behavior specification 

Entity Function 

COUPLED 

AdsNet The topmost level in the sample system. Contains counties and an Attention manager, similar in functionality to 

the Sampling Manager 

County An intermediate level in a hierarchical system that contains cities and county-level Sampling Manager to allocate 

resources to various cities. 

City Comprises of at most two sensors (with accompanying Rate Estimator) attached to Surveillance Areas 

Rate Estimator “Thinking element” of a Sensor that determines the qualitative level of sensor data and reports it up the hierarchy 

Surveillance Area Composed of atomic Cell(s) and represents aggregate activity in a finite area. It behaves according to Qualitative 

System Specifications (QSS) and provides aggregated values not directly related to the individual threshold values 

of each individual Cell. 

 

ATOMIC 

AttentionMgr The behavior is identical to the Sampling Manager. 

SamplingMgr Control and allocates resources to be consumed by sensors in relation to their Surveillance Area. It assigns the 

sampling rate of sensors based on the information/activity reported to it. It also works on a threshold crossing 

concept. In an evolving system, it has the capability to alter the number of sensors. 

Sensor Monitors a Surveillance Area. It has its own sensitivity level and a maximum sampling rate. It receives the activity 

from the area and based on its sensitivity level, reports the accumulated activity to its Sampling Manager up the 

hierarchy and receives a new sampling rate.  

EvaluatorFunction Provides the evaluation criteria for accumulated activity of an area 

Sum Accumulates information (activity count) from all the active cells in an area. It is used at two levels of hierarchy, 

viz.  Surveillance Area and Rate Estimator 

StopWatch Keeps track of time a particular area remains active (above threshold) and notifies the time only when the area 

becomes dead. It introduces loss factor in the amount of activity reported in the area. 

ThresholdTester Checks if the number of cells becoming active are over a certain threshold before it can trigger off the stop watch 

to notify that they are dead 

ThresholdTesterNot Keeps track of the situation when the threshold hasn’t been reached and keeps the StopWatch in engaged state so 

that it continues to accumulate time 

Cell Turns active randomly and is proportional to the resources available in a Surveillance Area. It uses resources. It 

turn passive when resources turn zero. 



Table 3. Model Design elements 

Symbol Name Significance 

A Incoming activity This is the count of all the active cells in a surveillance-area and abstracts the notion 

of group of neurons showing correlated firing. 

S Sampling rate of sensor The rate at which a sensor samples activity. Higher rate implies high sensitivity and 

more resource usage 

T Rate-Estimator threshold A numerical value that “validates” sensory output. This is an abstraction that 

implements salience or selective tuning 

m Number of data messages  Total number of messages flowing in the system at a given time 

z Number of house-keeping 

messages 

Total number of messages that are required to keep the system active. This is 

analogous to various background processes that use resources for normal 

functioning of the active components 

R Job rate of sensor The rate at which a sensor generates an output. This is directly proportional to the 

sampling rate 

N Number of message in 

network queue 

Number of message in the network channels en-route various destinations. This is 

an abstraction of the conducting medium that amplifies/inhibits communication. 

n  Number of sensors Total number of sensors in the system 

 

We expect a behavior of distribution of resources from this 

level to lower levels (inside the counties) till the allocation 

reaches the sensor that displays the highest activity.  The 

algorithms implemented at different levels are independent of 

the hierarchy at every level as the RAM at that level 

distributes what’s available with it. We observed a similar 

behavior when we ran experiments. 

 

4. THEORETICAL ANALYSIS 

4.1. Model Design 

 This section defines the boundary conditions for the 

model parameters involved. Table 3 lists parameters and their 

role. Detailed implementation can be seen in [10].   

 

4.2. Presence of Rate-estimator (RE) with sensor 

4.2.1. Estimator Threshold 

The AdSNet System has a temporal character and has a 

working delay of 1 sec. This implies that any change in the 

activity has to persist for 1 sec to actually receive a new 

Sampling rate from the sampling manager (RAM). It is kept 

as such so that any small accidental change in the Activity 

measure doesn’t produce change in the Sampling rate 

updates. This critical design consideration prevents the 

system from going into rapid oscillations. The system makes 

sure that the incoming activity has persisted long enough 

before it communicates this change to the next level. This 

buffering/working delay is based on the system requirements. 

The default sampling rate of a sensor is certainly less than 1 

and consequently, the default Job-rate will be less than R. 

Therefore, the total amount of Activity reported per second 

is,  𝜉 = 𝐴 × 𝑅. 
 RE reports this activity to the RAM when the activity 

surpasses the threshold T. As a result, if the delay factor is 1 

sec, then, 𝑇 > 𝜉. This condition will enable RE to report the 

activity after at least 1 sec (iff the sensor is operating at 

maximum sampling rate) 

4.2.2. Number of messages in System (Bandwidth 

Usage) 

The bandwidth usage is determined by the number of 

messages in the Network Queue at a particular instant of time.  

    N = No. of Data Messages + Housekeeping Messages 

 

Consider the case when the RE is not present. In such a 

scenario, every data message (reporting of activity) from a 

sensor reaches RE.  

Total data messages per sec, 𝑚 = 𝑛 × 𝑅, where 𝑅 ≤
max 𝐽𝑜𝑏 𝑟𝑎𝑡𝑒. Hence, Total messages in the network without 

the Estimator,  

 𝑵∉ = 𝒎 + 𝒛                                                          (1) 

 

Now, considering the case when RE is present. Using 

(1), total data message per sec = 𝑛 ×
𝑅

𝑇
=

𝑚

𝑇
 

 

All the data messages go from the sensor into the RE that 

produces only one data output once the threshold is reached.  

Consequently, the effective data message is reduced by a 

factor of T. Note that RE is an integral part of an intelligent 

sensor and the data message need not leave the boundaries of 

sensor to come in the network channel. An output from the 

RE is used for communicating information.   

 

Total messages in Network Queue,    𝑵∈ =
𝒎

𝑻
+ 𝒛        (2) 

 

Taking ratios of N with N, the ratio of Bandwidth 

usage for a system with RE and without RE is: 

𝛾 =
𝑁∈

𝑁∉

=

𝑚
𝑇

+ 𝑧

𝑚 + 𝑧
=

1
𝑇

+ 𝑘

1 + 𝑘
,       𝑤ℎ𝑒𝑟𝑒 𝑘 =

𝑧

𝑚
 

 

Clearly,   can be approximated to 
1

𝑇
  when m >> z i.e. 

when the data messages are greater than the housekeeping 



messages. This is a practical assumption when the sensors are 

in a steady state and no housekeeping is required to maintain 

the system. Recall that in a discrete event scenario, message 

passing only occurs when there is a change in the state of the 

system.  Consequently, 𝑁∈ ≅
1

𝑇
𝑁∉, which implies that the 

messages in the Network Queue are reduced by a factor of  T, 

when RE is in operation. Another implication is: Having a 

“thinking component” that can put activity in “context” 

reduces the network chatter and conflicting information 

reaching higher levels of decision making. 

 

4.3. Sampling algorithms 

 RAM at each hierarchical level implements the 

algorithm to assign the sampling rates to different sensors 

inside the area.  

 

4.3.1. Normalized-Sum Rule (NS Rule) 

The NS Rule is based on the condition of limited 

resources (the situation when there are no free resources 

available and all the resources are already distributed). RAM  

has fixed resources. Consequently, the most active sensor 

should be granted maximum amount of resources as 

compared to other sensors. Any increase in the sampling rate 

of any sensor brings about the decrease in the rates of other 

sensors and vice versa. The NS model is represented as: 

𝑆𝑘 =
𝐴𝑘

∑ 𝐴𝑖
𝑗
𝑖

. 𝑤ℎ𝑒𝑟𝑒 𝑖 < 𝑘 ≤ 𝑗; 𝑎𝑛𝑑 𝑖, 𝑗 ⊂ 𝑁 𝑎𝑛𝑑 𝑗 ≥ 2 

 

4.3.2. Normalized-Max Rule (NM Rule) 

The NM Rule is based on the condition of unlimited 

resources (situation when there is always an amount of free 

resources available with RAM). When the resources are 

freely available with RAM, it can distribute them to the 

sensors and let them sample at the maximum rate. This would 

enable each sensor working at its maximum sampling rate. In 

order to focus and bring attention to the highest activity or 

highly active sensor, all the activity reported by the sensors 

is normalized by the maximum activity amongst them.  As a 

result, the sampling rate becomes a function of maximum 

activity present in the system at a given time. It can be 

represented as: 

𝑆𝑘 =
𝐴𝑘

𝐴𝑚𝑎𝑥

 

 

where 𝐴𝑘 is the incoming activity and 𝐴𝑚𝑎𝑥 is the current 

maximum activity. This rule has following properties: 

I. The maximum activity at any given instant defines the 

state of the system. If any sensor has a high Activity, it 

forces other sensors in the neighborhood (under the same 

RAM) to increase their sampling rate (through RAM) 

II. If 𝐴𝑘 < 𝐴𝑚𝑎𝑥, the arrival of any new Activity does not 

disturb the configuration of the system as long as it is 

less than the current maximum value 

III. If 𝐴𝑘 >  𝐴𝑚𝑎𝑥, then the incoming Activity replaces the 

current value of Amax and becomes Amax itself, resulting 

in updation of all the sampling rates in the vicinity of this 

sensor. As a result, the new activity grabs hold of the 

maximum resources that it can utilize iff it has the 

maximum activity as compared to other sensors in the 

system. 

IV. The assigned sampling rate is independent of the number 

of sensors operating at any given time in the system. As 

a result, the Job rate is also independent of the number of 

sensors. The NM Rule promotes scalability.  

V. Each sensor can work to its maximum potential 

(producing the max possible Job rate) unlike the NS Rule 

(where it has an upper bound) irrespective of the system 

load. 

VI. It helps us to define that providing resources and 

providing attention are two different operations. 

Providing attention leads to providing resources but not 

vice versa. Property (III) makes it more evident when the 

new incoming activity registers itself with RAM and 

causes reconfiguration of the entire sampling rate table 

based on its value. On the other side, property (II) 

provides the resources to the incoming activity but no 

attention. 

 

4.3.3. Tunable Alpha-Beta Rule (TA Rule) 

The TA Rule exploits the benefits of the NM Rule and 

adds negative feedback. It incorporates the previous sampling 

rate of the sensor (reporting the new activity) in the 

determination of the new sampling rate. Though the overhead 

increases at RAM’s end as it has to maintain a separate table 

for storing the previous sampling rates, it makes the system 

more realistic. Keeping the previous sampling rate in the 

calculation brings an element of “inertia” in the system and 

incorporates history/memory as in various non-linear and 

natural systems. This inertia factor is tunable and is presented 

as follows: 

Let the change in sampling rate be defined by 
𝑑𝑆𝑘

𝑑𝑡
, 

𝑑𝑆𝑘

𝑑𝑡
=

𝐴𝑘

𝐴𝑚𝑎𝑧

− 𝑆𝑘 

 

𝑆𝑘  (𝑡 + 𝑑𝑡) = 𝑆𝑘 + 𝑑𝑡 (
𝐴𝑘

𝐴𝑚𝑎𝑥

− 𝑆𝑘) 

 

= 𝑆𝑘(𝑡)(1 − 𝑑𝑡) + 𝑑𝑡 (
𝐴𝑘

𝐴𝑚𝑎𝑥

) 

  which gives us a new sampling rate of sensor k,  

 

𝑆𝑘
′ = 𝛼𝑆𝑘 + 𝛽

𝐴𝑘

𝐴𝑚𝑎𝑥

 

 

The TA Rule has the following properties: 



I. Based on the values of  and , the system can be made 

more sensitive or more sluggish.  and  are correlated 

by the function   = 1 

II. Increasing the sensitivity () automatically reduces the 

inertia factor () 

III. This rule makes the transition to a new activity level 

smoothly. There are no sharp rises and falls in the 

values of new sampling rate when compared with 

previous sampling rate. 

IV. Higher the , the faster the responsiveness of the system 

(through RAM) and higher the , the more inertia the 

system has and more averse to change to a new 

sampling  rate. 

V. Striking a balance between  and  defines the 

responsiveness of the system. 

 

5. QUANTITATIVE RESULTS 

 This section provides simulation results for NS, NM and 

TA algorithms within the RAM at the topmost RAM (Fig. 3). 

 

5.1. Response Time v/s new incoming activity 

 The environment consists of five sensors at their default 

activity value 100 and RE threshold T = 3500. Maximum job 

production rate R = 9 jobs/sec. The experiment is done for 

both NM Rule and NS Rule. The analysis yields a chart 

between Response Time of AdsNet System against a new 

incoming activity (Figure 7). Response Time is defined as the 

time taken by the system (specifically, RAM) to identify the 

most-active sensor and direct resources to the corresponding 

sensor, thereby increasing the sampling rate of that sensor.  

  

 
 

Figure 7. Response Time v/s Incoming Activity 

 

Comments and Inferences: 

a) NS Rule has a higher Response Time as the number 

of sensors increases while NM Rule is independent 

of number of sensors in the network 

b) The AdSNet system works well with a network 

model and an activity can break-into the system after 

passing through the network channel that induces 

losses as the information travels up the hierarchy 

and/or through a conducting medium. 

 

5.2. Response Time with TA Rule 

 This experiment evaluates TA Rule. The experiment 

setup is as follows: All the rate-estimators have threshold T 

of 3500. The maximum job rate R is 9 jobs/sec and all the 

other parameters have their usual meaning. The analysis of 

this rule yields two charts. The first chart (Figure 8) is of 

Response Time v/s the new incoming activity.  

 Comments and Inferences: 

a) When the incoming activity value is same as that of 

the background sensor activity (value 100), the 

Response time takes maximum value (when 

compared to Response time values for activity 

higher than background activity), irrespective of  
value. 

b) = 0.9 takes the least Response time and there is a 

marked difference in Response time values for  

 > 0.5.  

c) Response time increases for 0.1   0.7 and for  

 > 0.7, Response time starts decreasing.  

 

 The second chart (Figure 9) yields Stabilization time, 

defined as the time taken by the RAM to overcome the inertia 

as the sampling rate is increased gradually for the 

corresponding sensor. 

 Comments and Inferences: 

a) Stabilization Time again takes a steep curve at value 

equal to 100 indicating the competing nature of the 

new incoming activity and is same for every value 

of  when the incoming activity is same as that of 

background activity. 

b) Stabilization time decreases when  increases from 

0.1 to 0.7 (0.1   0.7) and starts increasing for  
≥ 0.7.  

c) Stabilization time for = 0.9 is unusually high 

d)  = 0.7 has the lowest Stabilization time. 

e) Stabilization time for  = 0.8 is in the same range 

as the Stabilization time for 0.1   0.7 

 

Figure 8 and Figure 9 bring about two surprising results: 

a) Response time is lowest when  is at maximum, 

which is contrary to the TA Rule that says the 

higher the , more sluggish the system becomes.  

b) The system is not at its maximum sensitivity (or 

lowest Stabilization time) when  is lowest i.e. 

0.1 ( is highest simultaneously as  +  = 1) 
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 However, both the above anomalies are completely in 

accordance with the definition of TA Rule. If we consider the 

sum of Response Time and the Stabilization Time, higher  

does end up making the system sluggish and lowest  

(highest ) does makes the system more responsive and 

bringing it quickly to steady state. In order to tune the values 

of  and  such that we can have minimum Response time as 

well as optimum Stabilization time, we have to exclude all  

> 0.7.  

 

 
Figure 8. Response Time for Incoming Activity with 

respect to different Alfa values 

 

 
Figure 9. Stabilization Time for incoming activity with 

respect to different Alfa values 

  

 The simulation results indicate that the range of  must 

confirm to the condition 0.1   0.7 for both Response time 

and Stabilization time behavior to coexist and comply with 

the requirements of an attention management system. This 

result is currently empirical and further analysis is needed to 

establish the significance of   0.7. The stochastic nature of 

the activity areas also needs to be further investigated and 

will be reported in our extended article. 

 

6. CONCLUSIONS AND FUTURE WORK 

 This research has successfully implemented a modular 

system capable of focusing attention to components 

displaying high activity and directing resources towards them 

so that they can accomplish their task efficiently. The 

framework has been built using DEVS formalism. 

Exploitation of variable structure DEVS allows the system to 

exhibit both the adaptive behavior as their environment 

changes and the steady state in a dynamic environment [11]. 

The architecture design can be mapped to any real life system 

that is hierarchically organized working along the rule of 

“chains of command”, which implies that the information is 

filtered and condensed as it travels up in the hierarchy. To 

demonstrate the basic concepts, the system has been mapped 

to geographical area distribution under the control of 

managers that allocates resources (like bandwidth and 

channel capacity) to areas under their control, which in turn 

distribute the resources to the end-user (sensors). In other 

examples, resources may take the form of knowledge 

partitioning as applicable in problems dealing with Big Data 

and Genetic Algorithms. The distribution is done intelligently 

with the most active component receiving the maximum 

number of resources. As the components pass through cycles 

of high and low activity so does the assignment of the 

resources allocated to it. The simulation results have 

confirmed that the system is capable of directing and 

switching its focus to components that display persistent high 

activity during simulation and also can withdraw attention 

from components which are not displaying any activity. 

Reference [13] shows that the reduction in energy in actual 

implemented systems (e.g., hardware) can be measured  and 

compared to the ideal level given by the disparity measure 

discussed above. Likewise, the attention switching 

architectures saves energy by not wasting it on components 

that do not need it in dynamic fashion, the (non-functional) 

performance of this architectures can be gauged by the 

disparity measure, a task left open for continued research. 

 This work adapts the WTA algorithm by incorporating 

various sampling algorithms that determine where an activity 

of highest importance, thereby receiving attention from DDM 

or a RAM. The criteria for deciding an activity “important” 

is based on the sensitivity of the sensor and the RE threshold. 

This component validates the importance of any activity 

sensed by the sensor. The WTA model enables the system to 

continually shift focus and direct its attention to the most 

active component. This model is an abstracted version of   

RCIDS, where the resources are directed towards a focused 

activity. This makes the system a generalized architecture 

capable of focusing attention and concentrating on the job at 

hand by providing more resource to it by redistribution and 

reallocation. It calls for two entities in the system: 
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1. Rate Estimator: Capable of drawing conclusions and 

analyzing situations based on threshold mechanisms 

in sensor’s local environment 

2. Sampling/Resource-allocation Manager: Capable of 

focusing attention to the most “relevant” sensor by 

increasing the sampling rate of the corresponding 

sensor. 

  

 The system has a fractal nature where there exists a RAM 

at every level to direct focus and attention and an RE coupled 

to every sensory element. The RE may or may not be present 

at the intermediate levels in the hierarchy but it must be at the 

coarsest level, to deduce and validate what the sensors are 

witnessing. The system also allows resources and peripheral 

attention to the ongoing working sensors and doesn’t inhibit 

or stall their operation in the pursuit of focusing attention to 

the important one. For different WTA mechanisms, the 

sensor population is met accordingly and in no case, the 

resources are completely withdrawn from the running sensors 

as it is not predictable which sensor might produce an 

important information the next instant. The system lets the 

other sensors keep working at their default settings and 

provide the resources for their operation and intermittently 

switches when an activity of high importance is encountered 

and advertised by any sensor.  

 We discussed the nature of attention and develop a 

system model that validates its emergent nature. This 

research also validates that in a resource constrained 

environment the system has to switch attention to focus the 

task-at-hand and to live within the energy constraints it has. 

We developed two metrics, i.e. Response time and 

Stabilization time that quantifies the time taken for the system 

to switch attention and continue to pay attention. 

 The component-based architecture and distributed 

operation of the system facilitates its deployment in the real-

world in terms of federates and participate in larger system of 

systems [15]. The AdsNet system is a proof-of-concept 

model for the larger RCIDS in the fact that the designed 

model is built using DEVS formalism suitable for modeling 

complex dynamical systems. The system can be made 

predictive and robust with more detailed modeling of the RE 

and WTA mechanisms implemented in the RAM, supported 

with efficient synchronization strategies. 
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