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Abstract—Locomotion of robotic and virtual agents is a

challenging task requiring the control of several degrees of

freedom as well as the coordination of multiple subsystems.

Traditionally, it is engineered by top-down design and fine-

tuning of the agent’s morphology and controller. A relatively

recent trend in fields such as evolutionary robotics, computer

animation and artificial life has been the coevolution and mutual

adaptation of the morphology and controller in computational

agent models. However, the controller is generally modeled as a

complex system, often a neural or gene regulatory network. In the

present study, inspired by molecular biology and based on normal

modal analysis, we formulate a behavior-finding framework for

the design of bipedal agents that are able to walk along a

filament and have no explicit control system. Instead, agents

interact with their environment in a purely reactive way. A simple

mutation operator, based on physical relaxation, is used to drive

the evolutionary search. Results show that gait patterns can be

evolutionarily engineered from the spatial interaction between

precisely tuned morphologies and the environment.

Index Terms—morphological computation, elastic network

model, behavior-finding

I. INTRODUCTION

Engineers have made remarkable progress in their ability to
design complex products. However, current engineering prac-
tice still favors a top-down approach, where the main problem
is manually divided into smaller ones in order to maintain the
overall complexity reasonably manageable. This procedure is
rather loosely defined and ultimately relies on human expertise
and creativity, which are skills that typically involve high
costs, are unreliable and are difficult to formalize. Moreover,
the ever increasing complexity of current engineered systems
and robustness requirements is reaching the feasibility limits
of the current paradigm, forcing the implementation of new
engineering methodologies.

Inspired by the biological evolution and morphogenesis of
organisms, recent advances in the discipline of evolution-
ary computation propose a radically different approach. Ge-
netic algorithms combined with artificial development mech-
anisms operate over a population of individuals encoded by
genomes that govern a morphogenetic process producing self-
constructed designs [1]. That is, the genome is not a blueprint
of the design, but the set of instructions that indirectly build

it. The evolutionary operations (mutations and crossover) are
applied to the developmental generative process that build
the design, not to the design itself. This approach has been
shown to overcome the issues of scalability, adaptability,
and evolvability present in traditional evolutionary algorithms
(based on a genomic representation that encodes the design in
a explicit way) when applied to complex problems [2]. As a
result, evolutionary developmental algorithms have been tried
in a wide range of design problems, including the structure
and controller of robots [3], digital creatures in Artificial Life
studies [4, 5, 6, 7, 8], and computer animated characters [9]. In
almost all models, however, the control system is fairly com-
plex (often based on some kind of recurrent neural network),
and in many cases, we believe, unnecessarily so.

In a seminal work [10], Chandana Paul demonstrated that a
whole body-control system is able to perform more complex
computations than the control system alone. This observation
spawned the concept of morphological computation—a design
methodology for robotic-like agents to exploit the dynamics
of interaction between the body and the control system,
resulting in minimal control systems. Several applications
have been proposed in the field of robotics, including the
design of semipassive bipedal robots [11], tensegrity robots
whose complex, coupled non-linear dynamics are harnessed
to generate a gait pattern with minimal control [10], path-
following agents [12], and robots with open-loop control
systems and minimal numbers of degrees of freedom that
can self-stabilize into fast gait patterns and generate diverse
behaviors through the interaction between body and control
system [13].

We present here a framework to generate bipedal agents that
can walk along a filament, taking inspiration from biological
molecular motors. Toward this goal, we apply a simple evolu-
tionary heuristic based on normal modal analysis [14] and a
behavior-finding strategy [12]. Our work can be construed as
“morphological computation” in two ways. First, the behavior
of the agents is not driven by a complex, network-based
control system, but emerges from their spatial characteristics.
Second, we use a simple and explicit genetic representation,
combined with a physics-based mutation operator able to
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Figure 1. Working cycle of a motor template.

induce coordinated changes in the agents’ structure. In this
way, we take full advantage of the spatial and geometric nature
of the genotype.

II. METHODS

The model is motivated by biological molecular motors,
such as the enzymes myosin, kinesin and dynein, capable of
transforming chemical energy into mechanical work. Break-
ing down ATP molecules for power, these molecular motors
can effectively walk along cellular filaments [15]. They are
composed of one or two motor heads, each comprising a
catalytic core (the site where ATP molecules attach) and a
docking site (the site where the motor attaches to the filament).
Each motor head undergoes a cycle (working cycle) of shape
changes (conformational changes), powered by the energy
stored in ATP molecules. The docking site cyclically attaches
and detaches from the filament in a coordinated way, allowing
the motor to advance through the filament.

Molecular motors can be construed as nanoscale robotic
agents. The control system is implicitly defined in the spe-
cific biochemical interactions between the molecular motor,
the ATP molecules, and the filament; in this way, their
morphologies canalize the movements and the function of
the motors [16]. Indeed, molecular motors represent a clear
example of morphological computation. Taking inspiration
from this observation, we have built a framework based
on evolutionary optimization to design robotic agents that
function in a way similar to molecular motors. We call these
agents motor templates, following our earlier work on this
topic [17]. A motor template represents the structure of a
plausible protein. It is modeled by a folded chain of vertices,
in which elastic links are established between two vertices if
and only if their distance is less than a given threshold [18].
Thus the whole object constitutes a 3D mass-spring network.
While modeling molecular motors with mass-spring networks
may seem simplistic, it can be justified theoretically: for most

proteins, including many molecular motors, the dynamics is
mainly dictated by their overall structure rather than their
specific biochemical compositions [19].

A. Motor templates
A template has two motor heads, each one endowed with a

catalytic core and a docking site. The catalytic core is defined
as a set of two nodes in the network. When an ATP molecule
binds to the core, it is placed exactly in the middle of the two
vertices, connected by a spring to each vertex in the pair. These
springs are stretched to model the change in potential energy
brought by the ATP molecule (this mechanism has been used
in other studies, as [18]). The docking site is modeled as a
set of nodes that can attach and detach from the filament. The
working cycle of a motor head can be described as a reactive
finite-state machine with four states:

1) Sticky state: The docking site is not in contact with the
filament, and the catalytic core is empty (Figure 1a).
This state ends when any node of the docking site
touches the filament: the node becomes fixed to the
filament, and an ATP molecule is bound to the catalytic
core with stretched springs (Figure 1b). Then, the motor
head transitions to the next state.

2) Bound state: The stretched springs introduced in the
transition to this state induce a conformational change
(Figure 1c), while the docking site remains firmly at-
tached to the filament, resulting in a conformational
change. After a fixed amount of time passes, the motor
head transitions to the next state.

3) Nonsticky state: the nodes of the docking site detach
from the filament, but remain in contact with it. If the
activity of the other motor head or residual elastic forces
drive the docking site out of contact with the filament
(Figure 1d), the ATP is expulsed from the catalytic core,
deleting the associated springs (Figure 1e). Then, the
motor head transitions to the next state.
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Figure 2. A mass-spring network (a) is processed to determine its catalytic

cores and docking sites. The normal mode associated to the third eigenvector

of its Kirchhoff matrix is shown (b). Each vertex is associated to a component

of the eigenvector, whose magnitude (size) and sign (white positive, gray

negative) conveys information about the vibration of the vertex in that normal

mode, splitting the structure into three clusters. A motor head (c) is then

composed of a catalytic core (ATP and connecting springs shown in black)

placed between a distal cluster and the central one, and a docking site (in

white). Finally, a motor template (d) is defined by joining two structures that

are mirror images of each other.

4) Relaxing state: When the catalytic core becomes empty,

the absence of the associated springs triggers another

conformational change. After a fixed amount of time

passes, the vertices of the docking site regain the ability

to get fixed to the filament, and the motor head transi-

tions to the initial state (Figure 1f), completing the cycle.

A motor head has completed a working cycle when it

has passed through all states and is back to the initial

one: 1-2-3-4-1.

Simple and elegant theoretical tools that consider proteins

as mass-spring networks, such as the Gaussian Network Model

(GNM), use normal mode analysis to predict their structural

and dynamical properties, and can do so to a surprising

extent, including their unfolding pathways [20], their domain

decomposition [21], and, in particular, their conformational

changes and the position of their catalytic cores [22]. We use

a heuristic based in GNM to determine the placement of the

docking sites and catalytic cores, which are indirectly encoded

in the morphology of the structure. Specifically, to define a

motor head (with a catalytic core and a docking site) in the

mass-spring network of a template (Figure 2a), we segment the

network using the normal mode associated to the third eigen-

vector of its Kirchhoff matrix [22]. This eigenvector assigns

a vibrational amplitude to each node in the network, which

can be either positive or negative. In Figure 2b, each node’s

size and color represent the amplitude and sign, respectively

(white is positive, gray is negative). Grouping neighboring

nodes with same-sign vibrational amplitudes, three clusters

can be defined in most mass-spring networks. There are two

interfaces (hinges) between the clusters, such that two of the

clusters are distal while the other one is central. As the third

eigenvector is associated to a low-frequency normal mode, the

interfaces heuristically indicate the places where the structure

may bend easily in a conformational change [22]. In one of

the interfaces, we introduce a catalytic core defined as a pair

of nodes where ATP can bind (in Figure 2c, the ATP and its

binding springs to the nodes of the core are shown in black),

one node in a distal cluster and the other in the central one.

As many pairs of vertices may exist, a heuristic is applied to

select one of them. The docking site associated to the catalytic

core is defined as the nodes of the associated distal cluster

(Figure 2c, white nodes). Finally, the template is constructed

by joining two instances of the structure (one of them the

mirror image of the other) at the level of the first vertex in

the chain of vertices, and setting a motor head at the opposite

end of the structure (Figure 2d). This is inspired in the fact

that many molecular motors function as dimers [15], i.e., they

are composed of two joined identical proteins, each equipped

with a motor head at their other extremity.

B. Evolutionary search
The genotype-phenotype mapping is direct at the mor-

phological level: the genome is the 3D structure. At the

functional level, however, the configuration of the motor heads

is indirectly encoded by the structure, as described in the

previous subsection.

To start an evolutionary optimization, the agents in the

initial generation are generated as randomly folded chains of

50 nodes, defining relaxed springs between all neighboring

nodes. Then, agents are evaluated in the following simulation:

they are placed above a straight filament (made of nodes of

the same size as the nodes of the structure), such that both

docking sites touch it. One of the motor heads is set in the

sticky state, while the other is set in the beginning of the

relaxing state. If the structure and the configuration of the

motor heads is adequate, coordinated working cycles (that is to

say, their states change in a coordinated and cyclic way). After

a preset amount of time passes, the simulation is stopped and

the fitness is calculated to be the displacement of the agent’s
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Figure 3. A mass-spring network structure is mutated (a) by enlarging the

rest length of a spring (dark gray). The resulting structure after relaxation

is shown (b) along with the original structure, in dark gray. Arrows point

towards the main direction of displacement in each part of the structure.

center of mass in the direction of the filament, plus the number

of completed working cycles by both motor heads.

For some structures, the heuristic cannot properly define the

configuration of the motor heads (docking sites and catalytic

cores). In this case, they are tagged as nonevaluable and

are not subject to selection (they are eliminated from the

evolutionary competition).

After the evaluation is done, a new population of agents

is generated from the previous one by preferentially selecting

agents with higher fitness. Finally, the mutation operator is

applied (Figure 3). As the genotype-phenotype mapping is

direct at the morphological level, the mutation operator must

be able to bring many coordinated changes to the structure,

in order to be effective. This can be accomplished by using a

physics-based mutation: as each network is a spatial configura-

tion of vertices connected by springs in resting state (neither

compressed nor stretched), a mutation consists of changing

the rest length of one or several springs, each one by an

independent, random amount. These perturbations introduce

potential energy in the mass-spring network. If it is allowed

to relax through a physics simulation, the relative positions of

many vertices will change in a coordinated manner (just as

originally intended) to relieve the stress. After the relaxation

process, the rest lengths of the springs are set to the new

distances between nodes, and springs may be added (resp.

deleted) if nodes become (resp. cease to be) neighbors. In each

evolutionary run, a population of 100 templates undergoes the

evaluation-selection-mutation cycle for 200 generations.

III. RESULTS

The model has been tested in 38 evolutionary runs. In

each run, 100 random mass-spring networks were generated

to compose the corresponding initial population, 3800 in total.

Almost all of them either walked a negligible distance or were

nonevaluable (Figure 4). However, taking as a reference the

distance walked by the best individual in each evolutionary

run, significantly improved individuals have evolved, too. In

Figure 4. Histograms comparing the performance of 3800 randomly

generated templates and the best evolved templates in 38 evolutionary runs.

In the first histogram, a significant fraction of the templates (� 1600) are

nonevaluable.

many cases, relatively minor modifications to the mass-spring

network triggered a significant increase in the distance covered

by the corresponding motor templates, suggesting that good

templates needed to be precisely tuned to the working cycle

and the details of the simulation.

The evolved bipedal templates feature a range of shapes and

gaits:

• Walking pseudo-legs (Figure 5a) take short and secure

alternate steps. The example shown here presents the

peculiarity that the legs get attached to the filament at

different angles, yet they still produce a steady gait.

• Slow, well-secured pullers (Figure 5b) keep a firm grip

on the filament. Note that the limbs grasp the filament

from below, while they join above it. This example rotates

around the filament as it moves along it.

• Hoppers (Figure 5c) thrust themselves with both motor

heads in an alternate way, only occasionally attaching

both legs simultaneously to the filament. In the example

provided here, the greater parts of the limbs are entan-
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(a) (b)

(c) (d)

Figure 5. Sequences of snapshots illustrating the gait patterns of four evolved motor templates (in each case from left to right and from top to bottom). A

node in the filament is marked in red to provide a point of reference.

gled into a single mass, effectively acting as cargo, and

transported by comparatively small actuating limbs.

• Short but fast pulling pseudo-limbs (Figure 5d) are the

fastest bipedal templates evolved in these experiments.

This example has the peculiarity that the phase difference

between both legs drifts in time.

IV. DISCUSSION

In this study, we have presented a framework to generate

motor templates (walking bipedal agents) inspired by biolog-

ical molecular motors. The methodology consists of deriving

the function of the agents from their structures (based on

normal modal analysis), via a simple evolutionary algorithm

and a physics-based mutation operator. The resulting struc-

tures can be interpreted as models of robotic agents made

of elastic materials, suspended in a viscous fluid, while the

“ATP molecules” that power the agents can be interpreted as

simple actuators modifying the length of isolated parts of the

structure.

As the structures are optimized to solve a functional prob-

lem (move forward as fast as possible) without morphological

specifications, the problem can be described as behavior-
finding [12] structure or morphology according to a set of

constraints. The application of evolutionary optimization to

behavior-finding tasks often yields diverse and sometimes

unexpected solutions [12].

Many aspects of the model were specifically designed to

be as simple as possible. The genome is minimal: it is only

a fixed-width sequence of nodes in 3D space with springs

between neighboring nodes, and the evolutionary algorithm is

also very simple, including a single mutation operator and no

crossover. Viable gait patterns could still be found in a high-

dimensional space because the search was canalized in two

ways:

• The working cycle (a simple reactive model) is hard-

wired, and the configuration of the motor heads is in-

directly encoded in the morphology of the agent.

• The mutation operator is based on physical relaxation

after the application of perturbations to the structure, so

it induces a fitness landscape that is more correlated to
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the physical characteristics of the structure, which plays
a key role in the configuration of gait patterns.

However, these features of the model are relatively low-level
and did not constrain in any precise way the gait patterns of
the templates. Thus the diversity of shapes and gait patterns
was only enabled, not determined, by these characteristics
and by the fact that the individuals competed in a 3D
virtual world, coevolving their morphologies and behaviors
(gait patterns). Morphogenesis arose by repeated application
of a complex mutation operator through evolutionary time,
instead of leveraging a complex genotype-phenotype mapping.
As an example of morphological computation, gaits lacked
any specific control subsystem: gait patterns emerged from
the interaction between the properties, the physics, and the
geometry of the templates and filament.

The mutation operator can also be considered as a mode of
morphological computation. Instead of using heuristics based
on the analysis of the characteristics of the structures, the
mutation operator only perturbed the rest length of one or
more springs in the structure. The new structure was then
calculated by simulating physical relaxation, which naturally
induced many coordinated changes into the mutated structure.
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