

Homeostatic architectures for
robust spatial computing

David H. Ackley
Lance Williams

University of New Mexico
Computer Science

The Robust Physical Computation Group

Spatial Computing Workshop 2011
Ann Arbor, MI

October 3, 2011

Plan

● Advocacy /
● We have a problem
● How we got into this mess
● Robust spatial computing

● Research /
● The movable feast machine
● Homeostatic computation
● Demos

● Call to action / Test to failure

Our security train wreck
● First bug costs the machine
● Non-solutions:

● Blaming the user / user education
● Blaming the developer / fixing the last bug

● Solutions:
● Blame von Neumann

 Computation
must be born again

►OK, our answer might be wrong

How we got into this mess
Digital hardware is

massively redundant

The Original Deal:
Hardware shall be reliable
Software shall be efficient

(* Computation shall be serial)

One person's
analog signal..

..is another
person's digital

noise.

Architecture matters: Space

● CPU + RAM
● Von Neumann’s

lament
● Strategy: Let space

be space
● Consequences:

Fungibility, scalability

Architecture matters: Time

● Scalability issue: The light cone
● Robustness issue: Single source clocking
● Design issue: Who waits for whom?

– Vs Nakamura (1974), Toffoli (1987), Nehaniv (2002)

● Synchronous design begs the question

Architecture matters: Correctness

● Who’s kidding whom?
● If not correctness?
● Best effort is better than correct

Indefinite scalability

● A single, clean, architectural criterion implying:
● Spatial computing
● Robust computation

● Perhaps a tad ambitious

Indefinite scalability
Let space be space, let time be time

● Sacrificing:

✗ Fixed-width addresses, unique node names.

✗ Logarithmic global communication cost

✗Single source clocking, phase synchronization

✗ 'Times' – run time, load time, power on time..

● Embracing:

✔Opportunistic reproduction for ||ism & robustness

✔Movability for configuration, manifest destiny, ...

✔Multilevel robustness: Up to the end-user

Living Computation

● Impossible working conditions:
● Program inputs might be late, missing, wrong
● Program execution might be faulty

● Become livable if
● Program outputs can be wrong, late, missing

● Because:
● Others are duplicating/checking your work

● Efficiency and robustness are mortal enemies

An example: Software engineering
as artificial chemistry

Processing

● Hardware packs as
many disjoint event
windows into space-
time as possible

● Software defines a
set of types with
atomic formats and
behavioral rules;
initial conditions

● Typical parameters:
● 64 bits per site; 16 bit header +

48 bonds and or state

● Event window radius 4 L0
distance

● Bonds are symmetric and relative

Movable feast machine
Sites & atoms

Movable feast machine
Event window

Movable feast machine
Visualization

Demon Horde Sorting:
Robust Computation Example

● Task: Flow sort endless
data stream

– It’s impossible
● 'Maxwell's Demon' sorting

elements maintained in
homeostasis by DReg

● Surprise: Quality vs data
rate..

Computation shall be

As robust as possible
As efficient as necessary
As correct as a Google search

Call to action

