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Plan

● Advocacy /
● We have a problem
● How we got into this mess
● Robust spatial computing

● Research / 
● The movable feast machine
● Homeostatic computation
● Demos

● Call to action / Test to failure



  

Our security train wreck
● First bug costs the machine
● Non-solutions:

● Blaming the user / user education
● Blaming the developer / fixing the last bug

● Solutions: 
● Blame von Neumann



  

 Computation 
must be born again

►OK, our answer might be wrong



  

How we got into this mess
Digital hardware is

massively redundant

The Original Deal:
Hardware shall be reliable
Software shall be efficient

(* Computation shall be serial)

One person's 
analog signal..

..is another 
person's digital 

noise.



  

Architecture matters: Space

● CPU + RAM
● Von Neumann’s 

lament
● Strategy: Let space 

be space
● Consequences: 

Fungibility, scalability



  

Architecture matters: Time

● Scalability issue: The light cone
● Robustness issue: Single source clocking
● Design issue: Who waits for whom?

– Vs Nakamura (1974), Toffoli (1987), Nehaniv (2002)

● Synchronous design begs the question



  

Architecture matters: Correctness

● Who’s kidding whom?
● If not correctness?
● Best effort is better than correct



  

Indefinite scalability

● A single, clean, architectural criterion implying:
● Spatial computing
● Robust computation

● Perhaps a tad ambitious



  

Indefinite scalability
Let space be space, let time be time

● Sacrificing:

✗ Fixed-width addresses, unique node names.

✗ Logarithmic global communication cost

✗Single source clocking, phase synchronization

✗ 'Times' – run time, load time, power on time..

● Embracing:

✔Opportunistic reproduction for ||ism & robustness

✔Movability for configuration, manifest destiny, ...

✔Multilevel robustness: Up to the end-user



  

Living Computation

● Impossible working conditions:
● Program inputs might be late, missing, wrong
● Program execution might be faulty

● Become livable if
● Program outputs can be wrong, late, missing

● Because:
● Others are duplicating/checking your work

● Efficiency and robustness are mortal enemies



  

An example: Software engineering 
as artificial chemistry



  

Processing

● Hardware packs as 
many disjoint event 
windows into space-
time as possible

● Software defines a 
set of types with 
atomic formats and 
behavioral rules; 
initial conditions

● Typical parameters:
● 64 bits per site; 16 bit header + 

48 bonds and or state

● Event window radius 4  L0 
distance

● Bonds are symmetric and relative 



  

Movable feast machine
Sites & atoms



  

Movable feast machine
Event window



  

Movable feast machine
Visualization



  

Demon Horde Sorting:
Robust Computation Example

● Task: Flow sort endless 
data stream

– It’s impossible
● 'Maxwell's Demon' sorting 

elements maintained in 
homeostasis by DReg

● Surprise: Quality vs data 
rate..



  

Computation shall be

As robust as possible
As efficient as necessary
As correct as a Google search

Call to action


