
Interaction-Based Simulations
for Integrative Spatial Systems Biology

Application to the Simulations of a
Synthetic Multicellular Organism in MGS

Antoine Spicher1, Olivier Michel1 and Jean-Louis Giavitto2

1 LACL - EA 4213 - Université de Paris 12
Faculté des Sciences et Technologie

61 avenue du Général de Gaulle
94010 Créteil Cedex - France

{antoine.spicher,olivier.michel}@univ-paris12.fr

2 IBISC Lab. - FRE 3190 CNRS, Université d’Évry & Genopole
523 place des terrasses de l’agora, 91000 Évry - France

giavitto@ibisc.univ-evry.fr

Abstract. Systems biology aims at integrating processes at various time
and spatial scales into a single and coherent formal description to allow
analysis and computer simulation. In this context, we focus on rule-
based modeling and its integration in the domain-specific language MGS.
Through the notions of topological collections and transformations, MGS
allows the modeling of biological processes at various levels of description.
We validate our approach through the description of various models of a
synthetic bacteria designed in the context of the iGEM competition, from
a very simple biochemical description of the process to an individual-
based model on a Delaunay graph topology. This approach is a first step
into providing the requirements for the emerging field of spatial systems
biology which integrates spatial properties into systems biology.

1 Introduction

It is Fermi (Fermi, Pasta & Ulam 1955) who proposed that computers, instead of
simply performing standard calculus, could be used to study and test a physical
idea. This was the introduction, in 1955, of the idea of numerical experiments,
also called in silico experiments by biologists.

This epistemological and sociological change had far reaching consequences,
providing to systems biology a unique tool in the investigation of biological
phenomena. Computer modeling and simulation give to the biologist an access
to “experimental results” that cannot be provided by direct experiments be-
cause of practical, economical or ethical reasons. However, as biologists realize
the limitations of informal, intuitive analysis of complex systems (McAdams &
Shapiro 1995, von Dassow et al. 2000), the computer is no longer used only to
perform a computation that cannot be done analytically or by hand: its is also

used to check and compare theoretical models, to systematically investigate the
consequences of an hypothesis, to explore the possible range of the parameters
and to record, analyze, control and summarize some elements of the (possibly
non-deterministic) behaviour of a complex biological system.

Within biology, systems biology is a particularly demanding application do-
main since it requires to integrate several models coming from unrelated area
of science like mechanics, chemistry, etc. The computer modeling and simula-
tion of such systems require the coupling of several model fragments specifying
determinist or stochastic interactions between the system’s entities to repre-
sent continuous or discrete evolution. For instance, the modeling of the growth
of the meristem at a cellular level (Barbier de Reuille et al. 2006b) requires
the coupling of molecular mechanisms (e.g. chemical reaction, diffusion, active
transport), mechanical stresses, developmental changes and genetic regulation.

Computer science has developed (or appropriated) many languages and tools
to help build models of real-world processes and to relate different models that
operate on different levels of abstraction and various spatial and time scales. In
this chapter, we advocate the use of a rule-based framework based on spatial
interactions as a unifying framework for the concise and expressive simulation
of a broad class of biological systems. We will address related issues such as:
Can the same framework be used to model determinist and stochastic systems?
Do we need different frameworks for the expression of continuous and discrete
systems? Could the same approach allow the natural and concise expression
of various theoretical approaches (for the purpose of simulation)? An answer
to such questions cannot be derived theoretically but convincing elements can
be provided through paradigmatic examples. This chapter is then organized as
follows.

Section 2 discusses some of the requirements of systems biology models, the
growing role of agent-based models and the current focus put on the notion of
interaction. We emphasize also the need to handle explicit spatial relationships.

Section 3 presents MGS, a rule-based, spatial interaction-oriented, experimental
programming language dedicated to the simulation of a broad class of biologi-
cal system. MGS is a Domain Specific Language (DSL). DSLs are programming
languages for solving problems in a particular domain. To this end, a DSL pro-
vides abstractions and notations for the domain at hand. DSLs are usually small,
and more often declarative than imperative. Moreover, DSLs are more attrac-
tive for programming in the dedicated domain than general-purpose languages
because of easier programming, systematic reuse, better productivity, reliability,
maintainability, and flexibility.

Section 4 introduces a running example we use to illustrate the versatility of the
rule-based approach: a synthetic multicellular bacteria or SMB. This example
comes from a project presented at the iGEM contest in synthetic biology. SMB
combines diffusion, genetic regulation and signalisation in a population.

Section 5 illustrates the use of the MGS rule-based approach with the devel-
opment of several models of the SMB. Each model focuses on a specific time
scale using a dedicated theoretical framework. We show how the MGS approach,
emphasizing the notion of spatial interactions, is able to express concisely in the
same unified and uniform simulation framework, stochastic and deterministic
models and discrete and continuous ones.

A short presentation of the perspectives and challenges opened by this work
concludes this chapter.

2 Computer Modeling and Simulation in Integrative and
Spatial Systems Biology

In this section we sketch several approaches in the modeling of biological systems.
We propose to base a unifying simulation framework on the spatial organization
of the interaction between the entities that compose the system. An experimental
programming language based on this idea is proposed in the next section and
exemplified through several examples in the second part of this chapter.

2.1 Dynamical Systems in Systems Biology

Biological processes are often modeled as dynamical systems (Smith 1999). At
any point in time, a dynamical system is characterized by a set of state variables.
The evolution of the state over time is specified through a transition function
which determines the next state of the system (over some time increment) as
a function of its previous state and, possibly, the values of external variables
(input to the system). The evolution function can be generalized to an evolution
relation to handle non-deterministic (e.g. stochastic) evolution.

Various mathematical framework with diverse properties can be considered to
formalize a dynamical system. For instance, state variables may take values from
a continuous or discrete domain. Likewise, time may advance continuously or in
discrete steps. Some examples of dynamical systems characterized by different
combinations of these features are listed in Table 1. Other combinations exist
and are not listed: the disintegration of a radio-active atom is a continuous-time
Markov process with discrete state for instance.

These various formalisms can be applied to the same system to capture dif-
ferent aspects of the system’s evolution. For example, the same reaction-diffusion
process (Turing 1952) in a tissue can be modeled in continuous space by par-
tial differential equations (PDE) or in a discrete space by a system of coupled
ordinary differential equations (ODE) where the state variables are the con-
centration of morphogens in each cell (Turing did both in his seminal paper).
Reaction-diffusion processes can be also modeled by iterated mapping, some-
times called “continuous automata”, a variant of von Neumann’s cellular au-
tomata (CA) (Von Neumann 1966) where a cell is described by real-valued local

concentrations (Turk 1991). And totally discrete (space, time and state) mod-
els of reaction-diffusion have also been proposed, for instance in (Greenberg &
Hastings 1978).

Table 1. Some formalisms used to specify dynamical systems according to the discrete
or continuous nature of time, space and state variables. The “space” row is explained
in section 2.2.

C: continuous
D: discrete

PDE ODE
Iterated

Mappings
Finite

Automata

State C C C D

Time C C D D

Space C D D D

The Need of a Unifying Simulation Language. The previous example
shows that a simulation workbench for integrative biology cannot support a
unique theoretical framework. In addition, even confronted to the development
of one specific simulation, the programmer must face the fact that the entities
part of a biological system may have a wide variety of nature, they cannot be
described homogeneously and yet they must be placed in a single simulation
framework. This is also the case in multiscale modeling where models of the
same system at different scales can have fundamentally different characteristics
(e.g. deterministic vs. stochastic).

These observations do not imply that only a general programming language
can be used for the implementation of simulations in systems biology. As a matter
of fact, the notion of dynamical system is a very general one but nevertheless,
it may receive some specific support that motivates the development of domain
specific languages. DSL offer, through appropriate notations and abstractions,
expressive power focused on, and usually restricted to, a particular problem
domain.

We believe that it is possible to provide abstractions and notations generic
enough to encompass and unify the variety of formalisms needed in systems bi-
ology. Such DSL will support the expressive representation of various kind of
states, time and evolution functions as well as the building of coupled heteroge-
neous models such as discrete/continuous or stochastic/deterministic dynamical
models. The programmer will be able to express the various models in a concise
and expressive way, making easier to debug, tune and evolve the simulations.
Such DSL makes also possible to relate models through their implementation.

State and Evolution function in Systems Biology. From the previous
presentation, it will be obvious that a DSL dedicated to simulation in systems

biology must support in one way or another the notions of state and evolution
function. However, these two simple notions must be looked in a fresh way in the
context of systems biology. As a matter of fact, many of the systems considered
in biology consist of populations of interacting entities. A good example is a
biological cell modeled by a system of molecules that react and interact to form
(other) molecules and molecular machines.

It is customary to abstract over these entities and use state variables to denote
macroscopic observables or population level properties like a global concentration
or a temperature3. It is assumed that as the population sizes increases, the
behavior of the biological system is asymptotic to that of this state-variable
model.

The terms aggregate or mean-field are sometimes used to qualify this ap-
proach. It allows a concise expression of the model and despite severe limitations,
mean-field approximations have been standard methodology for modeling popu-
lations of interacting entities, especially for large and homogeneous populations.
One reason is that no viable alternative was available before the widespread of
inexpensive computing power.

However, aggregate models rely on two assumptions that must be seriously
scrutinized in systems biology:

1. the state space can be described once and for all;
2. the global evolution function can be defined explicitly.

We examine these two assumptions in the rest of this paragraph.

Dynamical Systems with a Dynamical Structure. Very often the state
space of the considered biological process cannot be described once and for all.
The reason is that the structure of the biological system and therefore its de-
scription (by a set of state variables) may itself vary over time.

The dynamicity of the structure of a biological system has been repeatedly
emphasized and several formalisms have been proposed to specify both the evo-
lution of states and the evolution of the structure. Examples include: the concept
of (hyper)-cycle introduced by Eigen and Schuster in the study of auto-catalytic
networks (Eigen & Schuster 1979), the notion of autopoietic systems formu-
lated by Maturana and Varela (Varela, Maturana & Uribe 1974, Luisi 2003),
the variable structure system theory developed in control (Itkis 1976), or the
concept of organization introduced by Fontana and Buss to formalize and study
the emergence of self-maintained functional structures in a range of chemical
reactions (Fontana & Buss 1994).

3 relying on a mean-field approach where the idea is to replace all interactions to any
entity with an average interaction, reducing any multiple entities problem into an
effective one-entity problem.

We call such systems dynamical systems with a dynamical structure4 or (DS)2

in short (Giavitto & Michel 2002b, Giavitto & Michel 2003, Giavitto 2003). Bi-
ological examples include the production of molecules and their dynamic asso-
ciation into multimolecular complexes (Fontana 1992) or the birth and death of
cells with their mechanical constraints and signaling relations within a develop-
ing organism (morphogenesis).

Local Interactions. A consequence of a dynamical structure is that a global
evolution function cannot be specified. As a matter of fact, if the set of variables
that describe the system cannot be known in advance, it is even less possible
to specify a global evolution function (a dynamical structure is not mandatory
to prevent the explicit definition of a global evolution function, see the example
below).

This does not mean that the (global) evolution function does not exist: it
simply cannot be defined explicitly. This is the case when the individual (local)
interactions between the system’s entities are well characterized but the corre-
sponding global evolution function cannot be deduced. The macroscopic (global)
evolution of the system must be computed as the “integration” of all the various
local and dynamic interactions between entities.

2.2 Individual-Based Models and their Simulations

Individual-based models (Lynch 2008), also called agent-based models, propose
an alternative approach to mean-field approximation. Such models describe a
system from the perspective of its constituent units and focus on the represen-
tation and the modeling of the evolution of each individuals that appears in
the system. As a consequence, they tackle more easily the enormous modeling
difficulties raised by the dynamical structure of biological systems.

Individual-based approaches attract a renewed interest and become viable
alternatives because the increasing availability of inexpensive computing power.
However, they have their own drawbacks. Their mathematical analysis appears
to be at least as difficult as analysing aggregate variables models and the sim-
ulation remains the main tool to study the system’s evolution and for reaching
conclusions.

Thus, beyond aggregate models, a simulation language dedicated to systems
biology must be able to implement individual-based models.

Multi-Agent Implementation. Multi-agent systems (MAS) (Woolridge &
Wooldridge 2001) are often advocated as the tool of choice for the implementa-
tion of individual-based models (Spicher, Fats & Simonin 2009). A multi-agent

4 In (Bailly & Longo 2006, pp 125-127), the authors recognize the importance of
this class of dynamical systems and call it “dynamicité auto-constituante” (which
could be translated to “self-producing dynamicity”), a distinctive feature of living
organisms

system is a collection of autonomous decision-making entities called agents. Each
agent individually assesses its situation and makes decisions on the basis of a set
of rules.

It is easy to use an agent in a multi-agent system to represent the state of
an entity part of the modeled system. The global state of the system is then the
set of the state of each agent that composes the system.

However, multi-agent systems provide no support for the notion of interac-
tion. Several entities are engaged simultaneously in an interaction while agents
are supposed to evolve autonomously. Admittedly, in determining its evolution,
an agent takes into account its neighbors. But it cannot take into account for
example the evolution of its neighbors, which can be problematic.

A good illustration is given by a simple model of growth sometimes called
the Eden model (Eden 1958). This model has been used since the 1960’s as a
model for such things as tumor growth. In this model, a space is partitioned in
empty or occupied cells. At each step, occupied cells with an empty neighbor
are selected, and the corresponding empty cell is made occupied. An exclusion
principle prevents two occupied cells to invade the same empty cell.

This specification of the local evolution of the system defines the interaction
between an occupied and an empty cell. It is difficult to turn this specification
into a simple rule for one cell evolution because an empty cell can query its
neighborhood to find if they are occupied cells but they cannot known which or
even if an occupied cell will invade it. Conversely, when an occupied cell decides
to invade an empty one, it cannot determine if another occupied cell makes the
same decision at the same time.

The Spatial Structure of Interactions. Usually, only physically close entities
interact because information exchange ultimately have a local character (e.g.
transport of signaling molecules between neighboring cells). Thus the possible
interactions of the entities in the system reflect the underlying physical space.
The other way round, we can say that the spatial organization of the entities
composing the system organizes also their interactions.

In Table 1, we have introduced an additional criterion, space, to categorize
dynamical systems formalisms following the discrete or continuous setting used
for the spatial organization of their entities. For instance, in a cellular automaton,
entities called “cells”, are organized in a regular lattice (a graph). In PDE,
entities are localized in a continuous space (and are not necessarily punctual but
can extend over an entire subspace).

It is interesting to examine the case of aggregate models. For example, the
aggregate model of a chemical reaction supposes that the chemical solution is
well stirred and abstracts a population of molecules by a set of concentration
variables. In this case, there is no need to record the position and the velocity
of each molecules in the continuous underlying physical space: it is as if each
molecule could interact with any other. The possibility of chemical reactions is
only constrained by the “compatibility” of the reactants and is better described
by a discrete structure, the molecular interaction network. Even if this net-

work represents functional constraints rather than constraints from the physical
underlying space, it is obtained by “erasing” the localization of the molecules
keeping only the possibility of interactions between different species.

Taking the previous discussions seriously pushes to make a switch from state
and evolution function to agents and interaction. In the next section we will see
how topological notions used to describe neighborhood relationships can be used
to support the description of interactions in a programming language.

3 The MGS Domain-Specific Programming Language

The MGS project5 develops a domain-specific simulation language for systems
biology, also called MGS, allowing a clear and concise specification of processes
through spatial interactions.

In MGS, the state of a dynamical system is specified using an original and
generic data structure: the topological collection (Giavitto & Michel 2002a).
Topological collections are based on the topological relations between the in-
teracting subparts of the system. Furthermore, the specification of the evolution
law, trough local interactions, is simplified by the definition of transformations.
Tranformations are functions defined by a set of rules.

Topological collections and transformation are handled in a declarative style.
Declarative programming focuses on what should be computed instead of how it
must be done. Objects and constructions are close to the mathematical standards
which enable an easier mathematical reasoning on programs. Thus, a declara-
tive program is an executable specification not burdened by the implementation
details.

3.1 Topological Collection

One of the key features of the MGS language is its ability to describe and manipu-
late compound entities structured by an abstract topology. Topological collections
provide a unified view of the notion of data structure (Giavitto & Michel 2002a)
seen as an aggregate of elements organized with a neighborhood relationship. The
structure of the defined topological space allows to specify the organization of
the data structure.

The formalization of topological collections has been thoroughly studied in
previous work of the authors (Giavitto & Michel 2002b, Giavitto & Spicher
2008b). It relies on the notion of abstract cell complex (Munkres 1984) defined in
algebraic topology. A cellular complex is a discrete representation of a topologi-
cal space through a set of topological cells (an abstraction of elementary spaces
characterized by their dimensions) connected to each other through their in-
cidence relationships. These relations are based upon the notion of boundary.
This structure is then labeled with values leading to the notion of topological
5 The Web site of the project is http://mgs.spatial-computing.org

chain (Munkres 1984). This final notion of topological chain allows the associa-
tion of elements of an abelian group to the cells of a complex, resulting in a rich
algebraic structure. Intuitively, a topological collection (and its formalization as
a topological chain) generalizes the notion of field widely used in physics. Topo-
logical collections can also be thought as a generalization of the notion of array
where the index of an element is replaced by a position (a cell) in the underly-
ing space (in the underlying cellular complex). Topological collections subsume
a large familly of important data-structures. For instance, a labeled graph is a
special case of a one-dimensional chain.

In the context of biological systems modeling, topological collections allow an
intuitive representation of the state of the system: the elements of the collection
are the components of the system, and the topology of the collection fixes the
potential interactions.

Many topologies are available in MGS. In the examples below we will use
records, multiset, Group-based Fields (GBF), and Delaunay collections.

A record is one of the simplest collection consisting of two or more values so
that each component (called a field or member of the record) can be accessed
through a symbolic name. Each value in the record is “isolated” and has no
neighbor. Hence, there is no interaction between the elements of a record.

A multiset is a generalization of a set (Banâtre, Fradet & Radenac 2006):
the same element can appear multiple times in a multiset. In a multiset, each
element is neighbor of any others. Thus, a multiset is a good idealization of a
“chemical soup” (Giavitto, Malcolm & Michel 2004).

A GBF corresponds to a regular and uniform topology, as used in cellular
automata or for the numerical solutions of PDEs. The topology of a GBF is de-
scribed by a mathematical group, the group of elementary displacements (Giavitto
& Michel 2001, Giavitto, Michel & Cohen 2002).

Finally, in Delaunay collections, the topology is computed dynamically by a
Delaunay triangulation (Aurenhammer 1991) of a set of values embedded in Rn.

MGS allows heterogeneous collections (the elements of a collection can have
different types) and the arbitrary nesting of collections (i.e., an element of a
collection can itself be a collection).

3.2 Transformation

Topological collections represent an adequate medium to specify interactions.
The neighborhood relationship gives a local point of view of the organization of
the elements. In MGS, the specification of a transformation T :

trans T = { ... σ => f(σ, . . .); ... }

corresponds to the definition of a set of rules, where the left-hand side σ is a
pattern, matching for a subcollection, and the right-hand side f(σ, . . .) is an
expression that evaluates a new subcollection that will be inserted in place of
the matched one. The notion of subcollection depends on the topology of the
collection: a subcollection is a connected subset of a collection.

A very simple transformation is given by:

trans simpleT = { 0 => 1; }

This transformation is composed of only one rule which replaces the value 0 in
the collection by the value 1. There are two important points to note.

First, this transformation may be applied to any kind of collections. Such a
transformation is called polytypic (Jansson & Jeuring 1997). Polytypic transfor-
mations encapsulate once and for all an abstract process than can be reused in a
variety of situations. For example, MGS is expressive enough to allow the defini-
tion of a generic diffusion that can be used on any kind of collections (Giavitto
& Spicher 2008b).

Secondly, if the transformation simpleT defines the replacement of 0 by 1,
it does not specifies which 0’s must be replaced. If there are several occurrences
of 0 in the collection, do we have to replace all of them, some of them or just
one of them? In the two latter cases, how are the occurrences chosen? These
choices are under the control of a rule application strategy. The application of
the transformation T on a topological collection e using a strategy St is written

T[strategy = St](e)

In the current implementation of MGS, all available strategies are built-in (but
the functional composition of the transformations allows a certain flexibility
for specific requirements). In the following, we will use two of them: the Gille-
spie strategy based on the stochastic simulation algorithm proposed by Gillespie
to simulate chemical reactions (Gillespie 1977) and the maximal-parallel strat-
egy widely used in the context of L-systems (Lindenmayer 1968a) and P sys-
tems (Păun 2001). In the maximal-parallel strategy, which is the default strategy,
a maximal set of non-intersecting occurrences of the pattern are simultaneously
replaced by the right-hand side of the rule. When several such sets exist, one of
them is non-deterministically chosen.

3.3 Two Models of Diffusion

We illustrate the notion of transformation with the simulation of a paradigmatic
diffusion process. Diffusion is defined in a continuous setting by Fick’s first law,
which is given, in one dimension at x, by the following equation

J = −D∂φ
∂x

where J is the diffusion flux, D is the diffusion coefficient, φ is the concentration
of the diffusing substance and x is the position. Below, we describe two different
approaches to simulate the diffusion of a chemical on a one dimensional rod.

The Numerical Resolution of the Continuous Model. A forward differ-
ence discretization of the previous equation (Smith 1985) gives

C(i, t+ dt) = (1− 2h)C(i, t) + h(C(i− 1, t) + C(i+ 1, t))

where C(i, t) represents the concentration at time t of the ith element of the dis-
cretized rod. Parameter h depends on the chemical and of the diffusion constant
D.

This very simple computation can be programmed in MGS by the following
transformation:

trans diffuse[h, dt] = {
u => u + dt * h * (neighborsfold(+,0,u) - u * neighborsize(u))

}

where u is a pattern variable that matches any element in a collection, the
expression neighborsfold(op,e,u) uses operation op to combine the values of
the neighbors of u starting from the initial value e and neighborsize(u) returns
the number of neighbors of u. Additional parameters of a transformation are
provided between brackets after the name of the transformation and corresponds
here to the parameter h and dt .

5

10

15

Space

0

50

100

Time

0

200

400

600

800

Molecules

(a) Continuous diffusion

5

10

15

Space

0

50

100

Time

0

200

400

600

800

Molecules

(b) Discrete diffusion

Fig. 1. Evolution of a chemical diffusing in a 1D rod, modeled as a continuous process
(a) or as a discrete stochastic one (b). Intuitively, the left figure is the limit of the
right figure when the number of boxes in the rod and the number of particles grow to
infinity.

The Discrete Stochastic Evolution of a Diffusing Particle. The previous
example is very simple but still shows MGS’ ability to handle a continuous model.
It is straightforward to extend this process to a surface or a volume instead of a
1D rod.

Now, we want to take the same system but we focus at the level of the
molecules. The rod is still discretized as a sequence of small boxes, indexed by
a natural integer, each containing zero or many molecules. At each time step, a
molecule can choose to stay in the same box, or to jump to a neighboring box,
with the same probability p. The state of a molecule is the index of the box

where it resides. The entire state of the system is then represented as a multiset
of indices. The evolution of the system can then be specified as a transformation
with three rules:

trans diffuse[p] = {
q ={ P = (1 - 2*p) }=> q
q ={ P = p }=> q + 1
q ={ P = p }=> q - 1

}

The arrow construction ={...}=> is used to specify the specific parameters of a
rule. Here we give a value to the parameter P used in the probabilistic application
of the rule. In this strategy, a matched pattern is replaced by the right-hand side
of the rule only with a probability P. Additional rules (not shown here) are
provided to deal with boundary conditions.

Fig.(1) illustrates the iteration of the continuous and stochastic transforma-
tions. In the initial state, all particles are randomly distributed in the middle
third of the rod.

4 A Synthetic Multicellular Bacterium

In the forthcoming sections, we propose to illustrate the expressiveness brought
by the MGS language for the modeling, at various spatial and time scales, of the
same biological process: a synthetic multicellular bacterium (SMB) built during
the 2007 iGEM (Brown 2007) competition by the french team in Paris (Bikard
et al. Visited in may 2009).

We start by a short presentation of synthetic biology, the iGEM competition
and then we describe the SMB project of the Paris team.

4.1 Synthetic Biology

Synthetic biology is an emergent field which proposes an engineering point of
view on biology. It aims at building new biological systems by assembling stan-
dard low-level components called BioBricks (Knight 2006). These components,
designed in the projects presented for the iGEM contest, are described and stored
in an ontology hosted by the MIT6. They are pieces of DNA used to build bio-
logical functions (as for example a logical gate), and integrable within existing
genomes. For example, a brick activating the production of a chemical species
in the presence of a sufficient concentration of molecules of types A and B can
be interpreted as a function calculating the conjunction of the chemical signals
associated with the species A and B.

The basic principles of construction of the biological components, establish-
ing the biosynthetic methodology, was elaborated at the MIT at the turn of the
6 The BioBricks are available in the Registry of Standard Biological Parts available at

the following url http://partsregistry.org/Main_Page.

21st century and rely on classical engineering strategies: standardization, decou-
pling and abstraction (Endy 2005). The purpose of standardization is twofold: to
ensure compatibility between the bricks and to allow the development of generic
and normalized building protocols (i.e. functioning for all bricks), economically
accessible and easily implementable. Decoupling is a strategy that separates com-
plicated problems into simpler ones. For instance, the separation of the various
functions of a synthetic system allows the modularization of the system, the
reuse of its parts, the independent evolution of each of them, etc. The sepa-
ration of the phases of Design and Implementation reduce and eliminates the
dependence between the design of a gene regulatory network and the effective
building of a strand of DNA. Etc. Finally, an abstraction hierarchy supports the
engineering of integrated genetic systems by hiding information and managing
complexity through relevant levels of expression: from DNA nucleotides to parts,
devices and (complete biological) systems. Abstraction levels limit the exchange
of information across levels and allow individuals to work at any level without
regard for the details that define other levels.

4.2 The international Genetically Engineered Machine (iGEM)
Competition

iGEM is a competition launched by the MIT in 2003. More than 110 teams com-
ing from all around the world take part to the 2009 issue. The competition is
aimed at undergraduate students that are given the opportunity to manipulate
complex molecular biology processes made simple by the synthetic biology prin-
ciples. During a three months time period, students mentored by post-graduate
students and researchers, design, model and assemble BioBricks to produce new
biological functions integrated into living systems. At the end of the competi-
tion, all teams gather at the MIT in the first week-end of November during the
Jamboree where their projects are being evaluated.

In 2007 a french team supervised by A. Lindner and S. Bottani participated
to the competition and was ranked first in the “foundational research” category
for their Synthetic Multicellular Bacterium project. MGS was used to produce
most of the simulation needed to validate the design (one simulation was done
in MATLAB). In section 5 we present several simulation that are inspired or
extend the initial SMB simulations.

4.3 Objectives of the SMB Project

The objective of the SMB project is the design of a synthetic multicellular bac-
terium. This organism was thought as a tool that would allow the expression of
a lethal or dangerous transgenic gene in the Escherichia coli bacterium without
disturbing the development of its biomass. The main difficulty was to install a
mechanism of irreversible bacterial differentiation which makes possible to ex-
press the transgene only in a part of the population unable to reproduce. The two
lines, germinal (not differentiated) and somatic (differentiated and unable to re-
produce) are interdependent and then constitute a multicellular organization. In

Germline Soma
reproduces

the organism the organism

cannot reproduce

differentiates into

is required for

Fig. 2. The SMB is composed of two cell types: germ cells (G) and somatic (S) cells.
G cells are able to live by producing two different types of cells: G cells and S cells. S
cells are derived from G cells by an irreversible differentiation step, exhibiting a new
function required for the survival of the G cells. This dependency between G and S
cells defines the organism.

order to ensure that the ratio between the two populations makes it possible for
the system to grow, the sterile somatic cells are designed to provide to the ger-
minal cells a molecule essential to their reproduction: DAP (diaminopimelate).
Fig. (2) sketches the general principle of the project7.

The design of this organization asked for the development of two distinct
biological functionalities, one for the cellular differentiation and the other for
the feeding of DAP to the germinal cells. The study of this system was at the
same time theoretical and practical. Although the biological implementation of
the system could not be entirely carried out by lack of time, the students at
iGEM Paris provided experimental evidences and theoretical proofs that the
SMB organism was viable.

4.4 The Paris Team Proposal

To implement this functionality into the E.coli bacterium, the Paris team has
proposed an original construction. The gene regulatory networks (GRN) of the
proposal is described in Fig. (3). Two functions are described: a feeding device
based on the production of DAP molecules (in green) and a differentiation device
based on a classical Cre/LOX recombination scheme (in orange).

In the germline G, there is a natural expression of ftsK. This gene is essential
for replication. The protein product of gene dapA is DAP. This protein diffuses
in the environment and is rapidly degradated. However, in the germline, the
dapA gene is not active since it lacks a promoter to initiate its transcription and
G is auxotrophic in DAP.

The promoter dapAp is sensitive to DAP concentration. Located before the
gene Cre, it allows to adjust the production of Cre to the presence of DAP in the
environment. The production of Cre initiates the recombination/differentiation
process.
7 Additional informations are available at http://parts.mit.edu/igem07/index.

php/Paris/Introduction.

dapAp
Germline

DNA

promoter promoter

LOXCre T ftsK T LOX dapA T

ftsK endogeneousconstitutive

+
Soma

DNA

dapAp

Cre dapA T

constitutive
promoter

T

LOX

ftsK T

ftsK endogeneous
promoter

Plasmid

Fig. 3. Gene regulatory networks of the germinal and somatic cells describing the
feeding device (green) and differentiation device (orange). Cre, dapA and ftsK are
genes, LOX is a recombination site and T are terminators.

After recombination, the genomic reassembly leads, by the excision of the
parts between the two LOX recombination sites, to the soma cell type S and a
plasmid that is rapidly degradated. In the feeding device S, dapA is under the
control of its constitutive promoter and can be expressed. The synthesized DAP
diffuses in the environment allowing to reach G cells. Lacking ftsK genes, S cells
are sterile and eventually die.

5 Modeling in MGS

In this section we illustrate the expressive power of MGS through four exam-
ples derived from the SMB. These four examples have been chosen in order to
illustrate the MGS concepts on individual-based models as well as aggregated
models, and on spatialized as well as non-spatialized models, Cf. Table 2.

Table 2. Aggregated models vs. individual-based models and spatialized vs. non-
spatialized models in the SMB simulation examples.

aggregated individual-based

non-
spatialized

ODE (sect. 5.1)
stochastic simulation à la

Gillespie (sect. 5.3)

spatialized
discrete diffusion of DAP

(sect. 5.2)
cell-cell dynamical

interaction (sect. 5.4)

5.1 Solving Differential Equations

This first modeling of SMB is a kind of proof of concept based on the study of
a differential equations system. We propose here a rule-based expression of this
model with two simple resolution schemes: the Euler and Runge-Kutta methods.

The SMB Proof of Concept. The very design of SMB is based on the compo-
sition of a feeding device together with a differentiation device. We wonder here
whether this architecture could reach homeostasis, no matter how these devices
are implemented. So a minimal model is required to give such a proof of concept
of the design.

To answer this fundamental question, the Paris team proposed a theoretical
study of the population dynamics based on a classical differential equations
model. Let [G], [S] and [D] denote the concentration of germinal cells, somatic
cells and DAP molecules in a well-mixed solution. Their dynamics are captured
by the three following equations:

∂[G]
∂t

= α1
[D]n

[D]n + kn
[G]− α2[G]− α3[G] (1)

∂[S]
∂t

= α2[G]− α4[S] (2)
∂[D]
∂t

= α5[S]− α6[D] (3)

They give the time variation of each concentration as functions of [G], [S] and
[D]. Parameters αi denote respectively the growth rate of germ cells, the dif-
ferentiation rate, the death rate of germ cells, the death rate of somatic cells,
the production rate of DAP in the somatic population and the degradation rate
of DAP. In this model, the differentiation device is parametrized by α2 and the
feeding device is captured by parameters α5 for the DAP production and α1

that is weighted by a Michaelis-Menten function representing the dependence of
germinal cells growth to the DAP concentration.

Analysis of the ODE model. In general such models based on differential
equations are not easily investigated. The parameters are often numerous and
qualitative analyses are difficult. In our case, parameters α5 and α6 can be
dropped assuming that the DAP concentration is stabilized (i.e. when [D] re-
mains constant and equation 3 vanishes). This simplification of the model allows
to stress out two main populations behaviors. Indeed it reveals a non trivial fixed
point ([G]0, [S]0) that is unstable:

– for greater values of cell concentrations, an exponential growth is observed,
– for lower values of cell concentrations, both populations collapse to reach the

second and trivial fixed point (0, 0).

But is this result relevant? In other words, is the DAP stabilization assump-
tion realistic? Should the production of DAP fluctuate, the previous sketch does

not give any information on the viability of the SMB. In the following sections,
we propose to focus on this question relying on different characterizations of the
dynamics using numerical simulations.

A Numerical Solution of Differential Equations. By their, nature simula-
tions operate in discrete time. Models initially formulated in terms of continuous
time must therefore be discretized. Strategies for discretizing time in a manner
leading to efficient simulations have extensively been studied. Here we use as
an example a straighforward and very simple approach, the Euler method. This
method particularly fits well the simulation of problems of the form:

∂X(t)
∂t

= f(X(t)) X(0) = X0

where X(t) is a vector of values representing the state of the system at a given
time t, and X0 is the initial state. The function f computes the variation of each
coordinate of X at a given time t. As far as our problem is concerned, one has
the state X = ([G], [S], [D]) and function f corresponds to the three equations
(1), (2) and (3).

The Euler method computes a sequence of vectors Xn where X0 = X0 at
the initial time and the generic term is given by the first two terms of the Taylor
expansion:

Xn+1 = Xn + ∆tf(Xn)

where ∆t denotes the simulation time step.
We start the MGS expression of this computation by representing the state

of the system in terms of topological collection. We use here a record topological
collection (Cf. section 3.1) with fields of floating-point values for each concen-
tration:

record State = { G:float, S:float, D:float }

The variation of each concentration can be computed from such a state. The
following function implements this procedure according to equations (1), (2)
and (3):

fun Variation[a1,a2,a3,a4,a5,a6,k,n](X) = {
G = (

X*Dn

X*Dn + kn
*a1 - a2 - a3)*X.G,

S = a2*X.G - a4*X.S,
D = a5*X.S - a6*X.D

}

Parameters ai, k and n are given between bracket. Parameters between brackets
are “persistent optional arguments”. When omitted in a function or in a trans-
formation application, they take their values at the previous function invocation.
Note that the function Variation returns a record value of type State. It al-
lows collections X and Variation(X) to be of the same type, and then to share

the same set of positions (here fields G, S and D). This property eases the com-
putation. For example, while the concentration [G] is obtained at position G of

collection X (by the expression X.G), its variation
∂[G]
∂t

is at the same position G

of collection Variation(X) (corresponding to the expression Variation(X).G).
Finally, one step of the Euler method can be expressed by a transformation

to be applied on a collection of type State:

trans Euler[Dt,f] = {
x => let dx = f(self).(^x) in x + Dt * dx

}

In this transformation, the unique rule specifies how each element x of the col-
lection has to be updated by computing its variation dx. This variation is taken
at ^x (i.e. the position of x) of the collection and is computed by the function f
(a parameter of the transformation) applied on self. The identifier self always
refers to the collection on which the transformation is applied. In our example,
the actual value of f will be the previous function Variation. The whole tra-
jectory is obtained by iterating the application of transformation Euler on an
initial condition.

The reader is invited to note that transformation Euler is fully independent
from the specification of State and Variation, and can be used as a generic im-
plementation of the Euler method in many different contexts. Moreover, whereas
the Euler method is sufficient for the simulations described below, we would like
to underline that other integration methods can also be straightforwardly imple-
mented in MGS. The implementation of the Runge-Kutta method is elaborated
in appendix A of this chapter.

Interpretation of the Simulations’ Results. Numerical approaches suffer
from the lack of knowledge regarding the values of parameters. Hence, we cannot
rely on any quantitative information on the system. Nevertheless, experience and
classical examples give us sufficient informations to determine a range of possible
parameters. For the sake of the simplicity, we arbitrarily set them to the intervals
given in Table (3).

Table 3. Intervals of the parameters for the ODE-based model.

Parameter Interval Parameter Interval

α1 [0,2] α5 [0,1000]
α2 [0,1] α6 [0,1]
α3 [0,1] n 2
α4 α4 = α3 h 100

Our objective was to observe all the possible behaviors of the system for dif-
ferent settings of parameters (chosen in the parameters space defined by Table 3)
and starting from a common initial state.

The protocol of our study has consisted in running 10000 simulations of the
model. And each simulation has consisted in computing the Euler trajectory of
the system over 10000 iterations with a time step equal to 0.01 (that is, 100 arbi-
trary units of simulation time) starting from an initial state where only germinal
cells are present with a very high concentration of DAP. At each run, parameters
have been randomly chosen according to the intervals given in Table (3).

Euler[Dt=0.001,f=Variation]({ G = 100, S = 0, DAP = 10000 })

Results are given in Fig. (4). Only three clearly distinguished behaviors are
observed and coincide with the dynamics provided by the qualitative analysis:
population collapse (see Fig. 4(a)), exponential growth of the population (see
Fig. 4(b)), and the unstable fixed point (see Fig. 4(c)). In all behaviors, the sys-
tem starts by consuming DAP molecules to replicate. Once DAP concentration
gets below a certain level, differentiated cells start to appear and initiate the
production of DAP.

In order to understand what characteristics prevent an exponential growth,
the simulations have been classified according to the three behaviors, and their
distributions have been analyzed (see Fig. 4(d)-4(h)). Population collapse occurs
when germinal replication is hard (see small growth rate α1 or high death rate α3

on Fig. 4(d) and 4(f)) or when the differentiation rate is too low (see Fig. 4(e)).
The last two figures 4(g)-4(h) show that the system is not perturbed by the
behaviour of DAP production or degradation. This explains why no additional
behaviors are observed compared to the qualitative analysis. In fact, the brown
curves of Fig. 4(a)-4(c) (that correspond to the ratio [D]

[G]+[S]) show that the
normalized DAP concentration remains constant after a transient phase; the
assumption ∂

∂t

(
[D]

[G]+[S]

)
= 0 seems appropriate for a qualitative analysis.

The conclusion of this study is twofold:

1. the choice of DAP as the main molecule to design the feeding device is good
if the auxotroph germ line is robust and grows well in presence of DAP;

2. the differentiation device is required to be efficient (a reversible differentia-
tion should be prohibited).

Obviously, our work is a little rough and needs to be deeply improved. But it
illustrates how MGS can be used as a prototyping tool for providing quick results
and orienting further investigations.

5.2 Cellular Automata

In this second modeling, we focus on the effects on the SMB due to the spa-
tial organization of SMB. We propose to design a cellular automaton and to
implement it in MGS.

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 10 20 30 40 50 60 70 80 90 100

C
on

ce
nt

ra
tio

n
[G

],
[S

] a
nd

 [D
]

Time

[G]
[S]
[D]

[D]/([G]+[S])

(a)

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 10 20 30 40 50 60 70 80 90 100

C
on

ce
nt

ra
tio

n
[G

],
[S

] a
nd

 [D
]

Time

[G]
[S]
[D]

[D]/([G]+[S])

(b)

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 10 20 30 40 50 60 70 80 90 100

C
on

ce
nt

ra
tio

n
[G

],
[S

] a
nd

 [D
]

Time

[G]
[S]
[D]

[D]/([G]+[S])

(c)

0.5 1.0 1.5 2.0

100

200

300

400

500

600

(d)

0.2 0.4 0.6 0.8 1.0

100

200

300

400

500

600

(e)

0.2 0.4 0.6 0.8 1.0

100

200

300

400

500

(f)

200 400 600 800 1000

100

200

300

400

500

600

(g)

0.2 0.4 0.6 0.8 1.0

100

200

300

400

500

600

(h)

Fig. 4. Results of simulations of the ODE-based model. Figures 4(a)-4(c) illustrate the
three observed behaviors (resp. population collapse, exponential growth and unclas-
sified behavior). Figures 4(d)-4(h) give on stacked histograms the distribution of the
10000 simulation runs for each parameter (resp. α1, α2, α3, α5, α6) with populations
collapse in blue, exponential growth in purple, and unclassified behavior in brown.

The Spatial Organization of the SMB. The ODE-based model proposed in
section 5.1 considers the SMB as a molecular solution of three different species
uniformly distributed in space. In reality, the system consists of two populations
of cells that will be organized in space. Such an organization may induce het-
erogeneity in the cells distribution inducing some spatial artefacts hidden in the
ODE model (Durrett & Levin 1994). Some interesting spatial self-organizations
could even be observed; for instance, one can easily imagine that the SMB col-
lapses at some locations while it grows exponentially at others making some
patterns appear at the population scale (Shnerb et al. 2000). As a consequence,
one has to investigate whether space matters or not in the SMB development.

A Discrete Spatial Framework. Different formalisms allow to take space
into account. A first direction consists in extending the ODE of section 5.1 by
considering the spatial distribution of concentrations (i.e. [G], [S] and [D] would
depend on time but also on space). This extension would introduce in the formula
the use of a Laplacian operator to deal with the spatial diffusion of concentration
together with two additional parameters, each one corresponding to the diffusion
coefficients of cells or DAP. Nevertheless, these modifications make the original
ODE system become an PDE system, and increase the paramater space. The
associated phase space becomes way harder to study.

CA and MAS are another class of formalisms that explicilty consider spatial
organization. Both rely on a individual-based point of view.

We focus here on a CA approach. The Paris team proposed the same approach
to study the relation between DAP diffusion and differentiation. Their model is
based on states encoded as floating-point values to represent the concentration of
DAP on each cell, and the use of non-deterministic rules using random number
generators. On the contrary, we propose a totally deterministic CA with discrete
states and very simple rules. More specifically, we consider a superposition of
two CA: one deals with the DAP diffusions process while the other takes into
account the differentiation of the cells.

DAP Diffusion CA. Contrarily to the simulations of diffusion given in sec-
tion 3.3, we aim at specifying a phenomenological diffusion in a CA, that is
the propagation of an activation (e.g. “contains some DAP”) from a source cell
to its neighborhood. This behavior corresponds to a classical propagation rule
(like the elementary rule 254 (Wolfram 1986)) where a cell becomes activated if
one of its neighbors is activated. In order to limit the radius of the propagation,
the following rule may be used:

xt+1 = max{yt − 1|y ∈ N (x)} ∪ {0} (4)

where x denotes a cell of the CA, xt its state at time t andN (x) its neighborhood.
Here states are encoded by integers that are gradually decremented from the
source: 0 means no activation, n > 0 that activation propagates with radius n
around the cell. Some evaporation may be introduced to deal with the removing
of the source. Thus, a source maintains its state to a specific integer denoted by

NR. Figures 5(a)-5(c) show the discrete diffusion around an isolated source for
NR = 5 on an hexagonal grid.

Differentiation CA. This CA focuses on the bacterial layer. Each cell of the CA
represents a part of the whole population. Under some conditions on the DAP
level in the cell, a cell progressively goes from a majority of germinal bacteria
to a majority of somatic bacteria. We propose to abstract possible levels of
concentration by using an integer value ranging in [0, NP]. In fact, we consider
germinal cells to be under an increasing pressure (from NP meanning no pressure
to 1 for the highest level) until it differentiates into somatic cells (using state 0):

ut+1 =

NP if there is no pressure
0 if ut = 0
ut − 1 otherwise

(5)

where u denote a cell of the CA and ut its state at time t.

Coupling Both CA. Equations (4) and (5) are combined to define the final CA.
Let ct = (xt, ut) denotes the state of a cell c a time t, the local evolution function
is given by:

ct+1 =
{

(NR , 0) if xt = 0
(max(0, xt+1 −NC), ut+1) otherwise (6)

where xt+1 and ut+1 are given by equations (4) and (5), and NC represents
the DAP consumption of germinal bacteria. Finally, we consider that there is a
pressure on a germinal cell when xt+1−NC is negative and there are not enough
sources of DAP in its neighborhood.

MGS Expression of a Cellular Automaton. MGS allows an easy speci-
fication of CA. As mentionned above, GBF topological collections are used to
represent regular grids. We propose to specify an hexagonal grid by the following
declaration:

gbf HexaGrid <a, b, c; a+b=c>

The GBF topology is the Cayley graph of the finite presentation of a commuta-
tive group. The group is generated by the elementary displacements available to
“move” from one node of the graph to one of its neighbors. A GBF collection is
defined by its finite presentation: a finite set of generators and equations between
the generators. Here, three generators are considered implying six neighbors for
each node of the graph: following unitary displacements a, b and c, and their
respective opposites (due to the group structure). Knowing that the group is
commutative (e.g. following directions a then b is equivalent to b then a) and
that following a then b is equivalent to c (specified by equation a+b=c), the asso-
ciated Cayley graph of the group is isomorphic to an infinite hexagonal grid. For
the purpose of this example, each GBF position is labelled by an MGS record of
type {x:int, u:int}, representing the state ct.

The dynamics of equation (6) is implemented as follows:

trans SMB CA = {
c / c.u == 0 => { x = NR, u = 0 }
c / NoPrs(c) => { x = Diff(c)-NC, u = NP }
c / c.u == 1 => { x = NR, u = 0 }
c => { x = 0, u = c.u-1 }

}

where NoPrs(c) computes whether there is no pressure on cell c and Diff(c)
computes the diffusion on cell c w.r.t. equation (4). Note that the order of the
rules matters: for instance, the matching of a cell by the third rule implies that
it cannot be matched by the first two ones. This transformation is applied using
the standard maximal parallel strategy of MGS.

Interpretation of the Simulations’ Results. Figures 5(d)-5(f) show how
differentiation appears on a population of germinal cells. As the CA transition

(a) (b) (c)

(d) (e) (f)

Fig. 5. Results of simulations of the CA model. Top line shows the propagation of DAP
around an isolated source with radius 5: from left to right, initial state, state after 1
iteration, state at fixed point. A yellow cell means no DAP, the blue scale represents the
presence of DAP and the distance to the DAP source. Bottom line shows the evolution
of the CA defined by equation 6, on a 40x40 hexagonal grid only filled by germinal
cells with a randomly chosen differentiation pressure: from left to right, initial state,
state after 13 iterations, state at fixed point. Germinal cells figure in blue and somatic
cells in green.

function is deterministic, symmetry is broken in the initial state (otherwise all
cells would exhibit the same behavior): we have chosen to start the simulation
with cells of the form { x = 0, u = 1+random(NR)}, that is to say germinal
cells with a pressure uniformly chosen in [1, NR], and no DAP.

No symmetrical pattern appears during the simulation, whatever the param-
eters NR, NP and NC are. The distribution of the differentiation cells follows
the pressure distribution chosen at the initial state. An equivalent behavior is
observed when the symmetry is broken by initializing randomly field x. The uni-
formity of the dynamics supports the assumption of a well-mixed solution used
in section 5.1 and confirms the previous result.

We have shown with this model how useful a rule-based programming style
fits well the specification of CA. No more than 10 lines are required to describe
it in MGS. Moreover, thanks to the polytypic feature of MGS, the specification
of the topology is totally decoupled from the definition of the dynamics; trans-
formation SMB AC could be applied on any kind of topological collection, and
more especially on any kind of grids and neighborhoods (like square grids with
von Neuman or Moore neighborhoods, toric topology, etc). More specialized CA
tools are often ad hoc and do not exhibit so much flexibility and genericity in
the expression of models.

5.3 Stochastic Simulations

The two previous approaches provide results at the level of the synthetic device.
In this section, we study on the construction of these devices in terms of biological
parts and synthetic construction as described in section 4.1. More specifically,
we propose a stochastic model of the SMB at the level of one bacterium together
with its simulations using the exact stochastic simulation algorithm defined by
Gillespie (Gillespie 1977).

Robustness Analysis of the SMB Design. The characterization of a syn-
thetic device depends on its implementation. We aim at checking if the behavior
of the Paris team construction respects the main objective of SMB. More pre-
cisely, we focus on the noise sensitivity and the relation between parts parameters
(like the rate of DNA Cre/LOX recombining) and the devices parameters (such
as the differentiation rate).

A common way of modeling gene regulation is to consider the regulatory net-
work as a set of biochemical reactions. The set of chemical interactions induced
by the Paris team construction (see Fig. (3)) are considered as the following
reactions:

Cre
C0

GGGGGGGGA . (7)

DAP
C1

GGGGGGGGA . (8)

DCre + DAP
C2

GGGGGGBFGGGGGG

C−2

D∗
Cre (9)

DCre

C3

GGGGGGGGA DCre + Cre (10)

D∗
Cre

C4

GGGGGGGGA D∗
Cre + Cre (11)

DG + Cre
2C5

GGGGGGGGA D∗
G (12)

D∗
G + Cre

C5

GGGGGGGGA DS (13)

DS

C6

GGGGGGGGA DS + DAP (14)

DAP
Cex

GGGGGGGBFGGGGGGG

Cim

DAPex (15)

These equations involve two kinds of chemical species: the DAP and Cre molecules,
and the DNA constructions of Fig. (3) abstracted by:

– DCre, D∗Cre: differentiation-free part of the construction composed of pro-
moter dapAp and the coding region for Cre. The two symbols represent, re-
spectively, the activated (no DAP repression on dapAp) and inhibited (DAP
binds dapAp) state of the promoter.

– DG, D∗G, DS: part of the DNA modified by the Cre/LOX recombination
mechanism, DG before and DS after recombination. D∗G corresponds to an
intermediate state where only one LOX site is bound by Cre.

Reactions (7) and (8) describe the natural degradation of molecules Cre and
DAP. Reactions (9-11) express the behavior of the promoter dapAp: inhibi-
tion/activation by DAP and production of Cre (the difference between reac-
tions (10) and (11) differ by their reaction constants: C4 � C3). Reactions (12)
and (13) specify the 2 steps of a Cre/LOX recombination: DG → D∗G → DS.
The regulation induced by DG (expression of gene ftsK) is not considered in this
model. On the contrary, the behavior of DS is specified by equation (14), that
is a constitutive production of DAP. The last reaction (15) expresses importa-
tion and exportation of DAP from the extracellular environment, where DAPex

denotes the external occurrences of DAP molecules.

Stochastic Modeling for Sensitivity to Noise Analysis. The Paris iGEM
team has chosen to investigate this kind of molecular model using a differential
equation approach based on the mass action law. Thanks to this study, they
provided a set of optimized parameters for an exponential growth of the SMB.
Nevertheless, such results may be biased since the differential approach (1) relies
on a global homogeneous assumption and (2) does not take noise into account.
Since the number of molecules involved in gene regulation is in general very low,
a stochastic approach may provide complementary result on noise sensitivity.

A usual abstraction in the simulation of biochemical systems consists in
considering the system (here the bacterium) as an homogeneous chemical so-
lution where the reactions of the model are taking place. Gillespie has proposed
in (Gillespie 1977) an algorithm for producing the trajectories of such a chemical
system by choosing the next reaction and the elapsed time since last reaction
occurred. Let µ be a chemical reaction, the probability that µ takes place during
an infinitesimal time step is proportional to:

– cµ, the stochastic reaction constant8 of reaction µ;
– hµ, the number of distinct molecular combinations that can activate reaction
µ;

– dτ , the length of the time interval.
8 Evaluating the stochastic constants is one of the key issues in stochastic simulations

of biochemical reactions. The interested reader should refer to (De Cock et al. 2003,
Zhang et al. 2003) for the description of two experiences in that field.

Gillespie proved that the probability P (τ, µ)dτ that the next reaction will be of
type µ and will occur in the time interval (t+ τ, t+ τ + dτ) is:

P (τ, µ)dτ = aµe
−a0τdτ

where aµ = cµhµ is called the propensity of reaction µ, and a0 =
∑
ν aν is the

combined propensity of all reactions.
This probability leads to the first straightforward Gillespie’s algorithm called

the first reaction method. It consists in choosing an elapsed time τ for each
reaction µ according to the probability P (τ, µ). The reaction with the lowest
elapsed time is selected and applied on the system making its state evolve. A
new probability distribution is then computed for this new state and the process
is iterated.

Gillespie-based Simulations in MGS. Here, we consider the bacterium as a
well mixed chemical solution. It can be represented by a multiset, that is a topo-
logical collection, where any element may interact with all the others (Fisher,
Malcolm & Paton 2000). This point of view is the starting point of abstract chem-
ical computation models like the CHAM (Berry & Boudol 1992) and Gamma (Bantre
& Le Metayer 1986). However, the simulation of “real” chemical reactions re-
quires a strategy for multiset rules application in accordance with the reactions
kinetics. The MGS language provides such a strategy based on Gillespie’s algo-
rithm. We propose to use this strategy for simulating the previous set of chemical
reactions.

As said above, the state of the bacterium is represented by a multiset of
values. The considered molecules are abstractly represented using MGS symbols
denoted by back-quoted identifiers. For example, the MGS symbol ‘Cre corre-
sponds to one molecule of Cre. Thus, each chemical reaction is translated into
a transformation rule (or two if the reaction is reversible) characterized by an
arrow parameter C representing the stochastic constant of the reaction. For ex-
ample, the reversible reaction (9) can be straightforwardly translated to the two
following MGS rules:

‘dCrA, ‘DAP ={ C = C2 }=> ‘dCrI and
‘dCrI ={ C = C−2 }=> ‘dCrA, ‘DAP

Consequently, the whole dynamics is captured by the following set of rules in
transformation SMB STO:

trans SMB STO[DAPEx] = {
‘Cre ={ C = C0 }=> .

‘DAP ={ C = C1 }=> .

‘dCrA, ‘DAP ={ C = C2 }=> ‘dCrI

‘dCrI ={ C = C−2 }=> ‘dCrA, ‘DAP

‘dCrA ={ C = C3 }=> ‘dCrA, ‘Cre

‘dCrI ={ C = C4 }=> ‘dCrI, ‘Cre

‘dG1, ‘Cre ={ C = 2*C5 }=> ‘dG2

‘dG2, ‘Cre ={ C = C5 }=> ‘dS

‘dS ={ C = C6 }=> ‘dS, ‘DAP

‘DAP ={ C = Cex }=> (DAPEx++; .)

. ={ A = DAPEx*Cim }=> (DAPEx--; ‘DAP)

}

In the last two rules, the external DAPex molecules are specified by the counter
DAPEx given as an optional parameter. This counter is incremented (resp. decre-
mented) when a DAP molecule is imported (resp. exported). Note that in the
last rule of transformation SMB STO, option A is used instead of C. By default,
MGS computes automatically the propensity of each rule using the value of the
parameter C and the number of elements in the collection that are involved in
the pattern. For the importation, the rule does not match anything and the
generic computation of the propensity from parameter C is meaningless. That
is why MGS allows the programmer to explicitly compute the propensity of the
rule using parameter A.

Interpretation of the Simulations’ Results. A simulation is run by calling
the transformation SMB STO using Gillespie’s strategy:

SMB STO[strategy=‘Gillespie,DAPEx=1000](‘dCrA::‘dG1::():bag)

The initial state is specified by two molecules, namely DCre and DG, added (with
the insertion operator ::) to an empty multiset (denoted by ():bag in the MGS
syntax). This state represents a germinal cell. External DAP is specified by
initializing counter DAPEx to 1000 molecules.

Top line of Fig. (6) gives two different runs of the simulation corresponding
to the evolution of Cre, DAP and DAPex populations over 100 arbitrary units
of time (AUT).

Fig. (6(a)) shows the classical behavior of a germinal cell: the DAPex is im-
ported from the outside until no DAP remains in the system (this process takes
60 arbitrary units of time). During this first part of the simulation, the expression
of Cre is repressed by the over representation of DAP. After that, the repres-
sion decreases during 10 AUT until some Cre molecules are produced. At time
85 AUT , DAP molecules appear that is meaning the differentiation occurred.
On the contrary, Fig. 6(b) shows the evolution of a germinal cell when DAPex

remains constant (i.e. expressions DAPEx++ and DAPEx-- are removed from the
specification of SMB STO). DAP molecules are exchanged between the cell and its
environment until an equilibrium is reached. Whereas any differentiation occurs
during this simulation, the germinal cell will differentiate since parameter C4 is
not null.

We propose to use the stochastic model to evaluate the differentiation rate
of SMB. More specifically, we focus on the mean simulation time required for
a germinal cell to differentiate while DAPex is constant. Results are given on
the bottom line of Fig. (6). The protocol of this experiment consists in running
1 000 simulations for each value of DAPex ∈ [0, 30] and starting with the same

 1

 10

 100

 1000

 0 10 20 30 40 50 60 70 80 90 100

N
um

be
r

of
 m

ol
ec

ul
es

Time

DAPEx
DAP
Cre

(a)

 100

 1000

 10000

 0 10 20 30 40 50 60 70 80 90 100

N
um

be
r

of
 m

ol
ec

ul
es

Time

DAPEx
DAP

(b)

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 5 10 15 20 25 30

M
ea

n
di

ffe
re

nt
ia

tio
n

tim
e

Number of external DAP molecules

(c)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 0 5 10 15 20 25 30

M
ea

n
nu

m
be

r
of

 it
er

at
io

ns
 to

 d
iff

er
en

tia
tio

n

Number of external DAP molecules

(d)

Fig. 6. Results of simulations of the stochastic-based model. On top, two examples of
stochastic simulations when external DAP (in red) remains constant (figure 6(b)) or
not (figure 6(a)). Internal DAP is drawn in green and Cre in blue. Figure 6(c) shows the
mean simulation time to differentiation with a constant external DAP concentration
for different values of that concentration. Vertical bars correspond to the standard
deviation. Figure 6(d) shows the mean computation time to differentiation.

initial state. Each simulation stops when the differentiation occurs (i.e. when
‘dS appears in the collection). Mean times and associated standard deviation
are plotted on Fig. (6(c)). Surprisingly both quantities seem to behave linearly
with DAPex .

One has to pay attention to the fact that such simulations are costly in
computing time. Fig. (6(d)) gives the mean computation time of the simulation,
showing that it increases more than linearly with the value of DAPex . Actually,
Gillespie’s algorithm, in its original definition, only allows a small numbers of
molecules.

As a conclusion, one can establish that the differentiation rate is easily related
to the quantity of DAP released in the environment by somatic cells. Indeed, such
a result is meaningful as it relates quantities of different scales: the population
and cellular scale of the differentiation and the genetic and molecular scale of
DAP concentration.

5.4 Integrative Modeling

So far, we have considered classical ways of modeling and simulating a biological
process at a given level of description. In this last model, we aim at simulating
the entire population of bacteria with an explicit representation of cells in a 2D
space9. In addition, we want to integrate in the model physical and biological
behaviours. Our proposition is based on the specification of cell-cell dynami-
cal interactions and the computation of the neighborhood of the cells using an
implicit Delaunay triangulation.

Description of the Model. In our proposition, bacteria are represented by
circles localized in the 2D Euclidean space, with a radius depending on their size.
Bacteria push away each other and consequently change their position in space
and their immediate neighbohood. Thus, this neighborhood is required to be
dynamically computed according to the spatial coordinates of their associated
circles. We use a Delaunay triangulation (Aurenhammer 1991) to compute this
neighborhood. Such approach has already been successfully used in systems bi-
ology for the modeling of cell population (Gibson et al. 2006, Barbier de Reuille
et al. 2006a).

The modeling of SMB is organized into two coupled models: a mechanical
model and a biological model. A cell is encoded by a record which includes
the position, the radius, the local DAP concentration, the differentiation state
(germinal or somatic), etc. Cells are elements of a Delaunay topological collec-
tion. This kind of collection computes implicitly and transparently the Delaunay
neighborhood.

Mechanical Model. The physical model consists of a mass/spring system. Bacte-
ria are considered as ponctual masses localized at the center of their associated
circle; the presence of a spring between two masses depends on the neighbor-
hood computed by the Delaunay triangulation. The mechanical effects of the
growth of the bacteria is captured by the elongation of the springs rest lengths.
Thus, each cell computes its acceleration by summing all mechnical forces in-
duced by its incident springs, and consequently moves in space. This is done
by the transformation Meca10. Meca sums the forces applied on each cell using
a neighorsfold expression. Then, the Euler transformation (see section 5.1)
is used twice to integrate during a time step ∆1t acceleration into velocity and
velocity into new positions.

Biological Model. The cellular model is an extension of the CA given in sec-
tion 5.2. The discrete DAP diffusion is replaced by the classical continuous model
given in section 3.3, and a stochastic differentiation is used instead of the notion
9 The third dimension is not considered as the SMB is supposed to grow in the plane

of a Petri dish for example.
10 The whole MGS program of the simulation is available at http://mgs.

spatial-computing.org/integrative_biology.tgz.

of pressure. New rules are added to deal with cellular growth, division and death:
in presence of DAP, cells growt by increasing their radius. When the germinal
cell radius reaches a threshold, the cell divides. Somatic cells keep on growing
then die until another threshold is reached. The corresponding transformation
is called Cell10 and computes the cellular evolution during a period ∆2t.

Integration of the Two Models. As classical functions, transformations can
be arbitrarily composed. This is the key to the coupling of the two models. The
iteration of a function can be specified by the MGS option iter. It allows to deal
with different time scales: assuming for instance that the mechanical process is
100 times faster than the cellular process (i.e. ∆2t = 100∆1t), the whole model
is captured by the following evolution function:

fun SMB DEL(state) =
Cell[Dt=∆2t](Meca[Dt=∆1t, iter=100](state))

where option Dt corresponds to the time step used in transformations Meca and
Cell. Here transformation Meca is applied 100 times for only one application of
Cell.

Interpretation of the Simulations’ Results. The protocol of the proposed
simulation consists in iterating 10 000 times the function SMB DEL starting from a
small initial population of 25 germinal cells with a deficit in DAP. Screenshots of
the simulation are shown on Fig. (7). The vizualization of the evolution exhibits
two interesting phenomena.

On small population size (i.e. at the beginning of the simulation), the ratio
of the two cell lines fluctuates. Fig. 7(b) presents a state of the population where
most of the cells are germinal. On Fig. 7(c), somatic cells predominate. The
oscillations are due to delays between configurations where germinal cells are well
fed (many somatic cells are present) and configurations of DAP starvation (not
enough somatic cells are present). The fluctuations decrease as the population
size increases and the ratio globally stabilizes as predicted by the ODE-based
model (see Fig. (4)). Indeed, the spatial distribution blurs the synchronization
between cells.

The population tends to spatially organize in the following way: uniformly
distributed small clusters of germinal cells surrounded by somatic ones. Clusters
remain small-sized because when their size increase (by germinal cell divisions),
the interior cells lack DAP and differentiate. This dynamics is reminiscent of the
behavior exhibited by the CA model of section 5.2.

6 Conclusions and Perspectives

Work in systems biology generally puts a considerable emphasis on the end re-
sult, the model of a complex biological system, and neglects the problem of
building this model. The construction of a model and its use, e.g. for simulation,

(a) (b) (c)

(d) (e) (f)

Fig. 7. Results of the integrative model. Germinal cells are in blue and somatic cells
in green. Fig. 7(a)-7(c) correspond to an initial population and its evolutions at time
43AUT and 62AUT . Fig. 7(d)-7(f) focus on a cluster of germinal cells surounded by
somatic cells. See text for explanation.

is a difficult task, and it often requires the combination of many formalisms and
complementary approaches. We want also to stress the importance of dynamical
structures in biological systems. This kind of dynamical systems is very chal-
lenging to model and simulate. New programming concepts must be developed
to ease their modeling and simulation.

In this chapter, we have illustrated the use of MGS, an experimental program-
ming language that investigates the use of topological collections and transfor-
mations in the simulation of complex biological systems. Based on the notion
of spatial interaction, MGS provides a unified simulation framework encompass-
ing discrete/continuous and determinist/stochastic formalisms. As a prototype,
MGS is in constant evolution, however MGS concepts have been validated on a
number of applications : the modeling of the paradigmatic phage lambda ge-
netic switch (Michel, Spicher & Giavitto 2008), the growth of the meristem at a
cellular level (Barbier de Reuille et al. 2006b), molecular self-assembly (Giavitto
& Spicher 2008a), a simplified version of neurulation (Spicher & Michel 2007),
sperm crawling (Spicher & Michel 2005), etc.

By varying the topology of a collection, MGS can emulate some well-known
computational models. Transformation on multiset is reminiscent of multiset-
rewriting (or rewriting of terms modulo AC) (Banatre & LeMetayer 1993).
Nesting multiset lead to P systems (Păun 2001) a new distributed parallel com-

puting model based on the notion of a membrane structure. P systems are ad-
vocated for the modeling of compartmentalized molecular interaction networks.
Lindenmayer systems (Lindenmayer 1968b) have long been used in the modeling
of (DS)2 in the domain of plant growth. They loosely correspond to transfor-
mations on sequences or string rewriting (they also correspond to tree rewrit-
ing, because some standard features make particularly simple to code arbitrary
branching structures like trees, Cf. the work of Prusinkiewicz (Prusinkiewicz
et al. 1990, Prusinkiewicz & Hanan 1992)). And as shown by section 5.2, it is
straightforward to express cellular automata in MGS.

The perspectives opened by this work are numerous. At the language level,
the study of the topological collections concepts must continue with a finer study
of transformation kinds. Several kinds of restriction can be put on the transfor-
mations, leading to various kind of pattern languages and rules. The complexity
of matching such patterns has to be investigated. The efficient compilation of a
MGS programmes is a long-term research. We have considered in this paper only
one-dimensional paths, but a more general n-dimensional notion of pattern has
been developed and is available.

Acknowledgements

We gratefully acknowledge all the people that contributed to make the first french
participation to iGEM in 2007 a success: the students, A. Rizk, D. Bikard, D.
Guegan, D. Puyraimond, E. Shotar, F. Caffin, G. Vieira, N. Chiaruttini, T.
Clozel, T. Landrain; the instructors A. Lindner, A. Jaramillo, F. Delaplace, F.
Képès, V. Schächter, S. Bottani; the advisors, F. Le Fevre, P. Tortosa, M. Suarez,
S. Smidtas and A. Spicher.

Further acknowledgments are also due to J. Cohen, B. Calvez, F. Thonner-
ieux, C. Kodrnja and F. Letierce that have contributed in various ways to the
MGS project.

This research is supported in part by the the University of Évry, the Uni-
versity of Paris-Est, the CNRS, GENOPOLE-Évry, the Institute for Complex
Systems in Paris-Ile de France and the french working group GPL.

References

Aurenhammer, Franz. 1991. “Voronoi diagrams–a survey of a fundamental geometric
data structure.” ACM Comput. Surv. 23(3):345–405.

Bailly, Francis & Giuseppe Longo. 2006. Mathmatiques et sciences de la nature. Her-
mann.

Banatre, J.-P. & D. LeMetayer. 1993. “Programming by Multiset Transformation.”
Comm. of the ACM 36(1):98.

Banâtre, Jean-Pierre, Pascal Fradet & Yann Radenac. 2006. “Generalised multisets for
chemical programming.” Mathematical Structures in Computer Science 16(4):557–
580.

Bantre, Jean-Pierre & Daniel Le Metayer. 1986. A new computational model and its
discipline of programming. Technical Report RR-0566 Inria.

Barbier de Reuille, Pierre, Isabelle Bohn-Courseau, Karin Ljung, Halima Morin, Nicola
Carraro, Christophe Godin & Jan Traas. 2006a. “Computer simulations reveal
novel properties of the cell-cell signaling network at the shoot apex in Arabidopsis.”
PNAS 103(5):1627–1632.

Barbier de Reuille, Pierre, Isabelle Bohn-Courseau, Karin Ljung, Halima Morin, Nicola
Carraro, Christophe Godin & Jan Traas. 2006b. “Computer simulations reveal
properties of the cell-cell signaling network at the shoot apex in Arabidopsis.”
PNAS 103(5):1627–1632.
URL: http://www.pnas.org/cgi/content/abstract/103/5/1627

Berry, Gérard & Gérard Boudol. 1992. “The Chemical Abstract Machine.” Theoretical
Computer Science (TCS) 96:217–248.

Bikard, D., F. Caffin, N. Chiaruttini, T. Clozel, D. Guegan, T. Landrain, D. Puyrai-
mond, A. Rizk, E. Shotar & G. Vieira. Visited in may 2009. “The SMB: Synthetic
Multicellular Bacterium (iGEM’07 Paris team web site).” http://parts.mit.edu/

igem07/index.php/Paris.
Brown, J. 2007. “The iGEM competition: building with biology.” Synthetic Biology,

IET 1(1.2):3–6.
De Cock, Katrien, Xueying Zhang, Mnica F. Bugallo & Petar M. Djuric. 2003. Stochas-

tic Simulation and Parameter Estimation of First Order Chemical Reactions. In
12th European Signal Processing Conference (EUSIPCO-2004).

Durrett, Richard & Simon Levin. 1994. “The Importance of Being Discrete (and
Spatial).” Theoretical Population Biology 46(3):363–394.

Eden, M. 1958. In Symposium on Information Theory in Biology, ed. H. P. Yockey.
New York: Pergamon Press p. 359.

Eigen, Manfred & Peter Schuster. 1979. The Hypercycle: A Principle of Natural Self-
Organization. Springer.

Endy, Drew. 2005. “Foundations for engineering biology.” Nature 438:449–453.
URL: http://dx.doi.org/10.1038/nature04342

Fermi, E., J. Pasta & S. Ulam. 1955. “Studies of nonlinear problems.” LASL Report
LA-1940 5. reprinted in the collected work of E. Fermi (University of Chicago,
Chicago, 1965), vol. 2, pp. 977–988, 1965.

Fisher, Michael, Grant Malcolm & Raymond Paton. 2000. “Spatio-logical processes in
intracellular signalling.” BioSystems 55:83–92.

Fontana, Walter. 1992. Algorithmic Chemistry. In Proceedings of the Workshop on
Artificial Life (ALIFE ’90), ed. Christopher G. Langton, Charles Taylor, J. Doyne
Farmer & Steen Rasmussen. Vol. 5 of Santa Fe Institute Studies in the Sciences
of Complexity Redwood City, CA, USA: Addison-Wesley pp. 159–210.

Fontana, Walter & Leo W. Buss. 1994. ““The Arrival of the Fittest”: Toward a Theory
of Biological Organization.” Bulletin of Mathematical Biology .

Giavitto, J.-L. & O. Michel. 2003. “Modeling the topological organization of cellular
processes.” BioSystems 70(2):149–163.

Giavitto, Jean-Louis. 2003. Topological Collections, Transformations and Their Ap-
plication to the Modeling and the Simulation of Dynamical Systems. In Rewriting
Technics and Applications (RTA’03). Vol. LNCS 2706 of LNCS Valencia: Springer
pp. 208 – 233.

Giavitto, Jean-Louis & Antoine Spicher. 2008a. Systems Self-Assembly: multidisci-
plinary snapshots. Elsevier chapter Simulation of self-assembly processes using
abstract reduction systems, pp. 199–223. doi:10.1016/S1571-0831(07)00009-3.

Giavitto, Jean-Louis & Antoine Spicher. 2008b. “Topological Rewriting and the Ge-
ometrization of Programming.” Physica D 237:1302–1314.

Giavitto, Jean-Louis, Grant Malcolm & Olivier Michel. 2004. “Rewriting systems and
the modelling of biological systems.” Comparative and Functional Genomics 5:95–
99. http://www.ibisc.fr/~michel/PUBLIS/2004/CFG04.pdf.
URL: http://www.ibisc.fr/ michel/PUBLIS/2004/CFG04.pdf

Giavitto, Jean-Louis & Olivier Michel. 2001. Declarative definition of group indexed
data structures and approximation of their domains. In PPDP ’01: Proceedings
of the 3rd ACM SIGPLAN international conference on Principles and practice of
declarative programming. New York, NY, USA: ACM Press pp. 150–161. http:

//www.ibisc.fr/~michel/PUBLIS/2001/ppdp01.pdf.
URL: http://www.ibisc.fr/ michel/PUBLIS/2001/ppdp01.pdf

Giavitto, Jean-Louis & Olivier Michel. 2002a. Data Structure as Topological Spaces.
In Proceedings of the 3nd International Conference on Unconventional Models of
Computation UMC02. Vol. 2509 Himeji, Japan: pp. 137–150. http://www.ibisc.
fr/~michel/PUBLIS/2002/umc02.pdf.
URL: http://www.ibisc.fr/ michel/PUBLIS/2002/umc02.pdf

Giavitto, Jean-Louis & Olivier Michel. 2002b. “The Topological Structures of Mem-
brane Computing.” Fundamenta Informaticae 49:107–129. http://www.ibisc.fr/

~michel/PUBLIS/2002/FI.pdf.
URL: http://www.ibisc.fr/ michel/PUBLIS/2002/FI.pdf

Giavitto, Jean-Louis, Olivier Michel & Julien Cohen. 2002. Pattern-matching and
Rewriting Rules for Group Indexed Data Structures. In ACM Sigplan Workshop
RULE’02. Pittsburgh: ACM pp. 55–66. http://www.ibisc.fr/~michel/PUBLIS/

2002/rule02.pdf.
URL: http://www.ibisc.fr/ michel/PUBLIS/2002/rule02.pdf

Gibson, Matthew C., Ankit B. Patel, Radhika Nagpal & Norbert Perrimon. 2006.
“The emergence of geometric order in proliferating metazoan epithelia.” Nature
442:1038–1041.

Gillespie, Daniel T. 1977. “Exact stochastic simulation of coupled chemical reactions.”
J. Phys. Chem. 81(25):2340–2361.

Greenberg, JM & SP Hastings. 1978. “Spatial patterns for discrete models of diffusion
in excitable media.” SIAM Journal on Applied Mathematics pp. 515–523.

Itkis, Yevgeny. 1976. Control Systems of Variable Structure. Wiley.
Jansson, P. & J. Jeuring. 1997. PolyP - a polytypic programming language extension.

In Principles of Programming Languages. ACM Press pp. 470–482.
URL: http://www.cs.chalmers.se/ johanj/polytypism/polyp.ps

Knight, Tom. 2006. “Idempotent Vector Design for Standard Assembly of Biobricks.”
MIT Synthetic Biology Working Group .
URL: http://dspace.mit.edu/handle/1721.1/21168

Lindenmayer, A. 1968a. “Mathematical models for cellular interaction in development,
Parts I and II.” Journal of Theoretical Biology 18:280–315.

Lindenmayer, A. 1968b. “Mathematical models for cellular interaction in development,
Parts I and II.” Journal of Theoretical Biology 18:280–315.

Luisi, Pier Luigi. 2003. “Autopoiesis: a review and a reappraisal.” Naturwissenschaftenl
(90):49–59.

Lynch, J.F. 2008. A Logical Characterization of Individual-Based Models. In Logic in
Computer Science, 2008. LICS’08. 23rd Annual IEEE Symposium on. pp. 379–390.

McAdams, HH & L. Shapiro. 1995. “Circuit simulation of genetic networks.” Science
269(5224):650.

Michel, Olivier, Antoine Spicher & Jean-Louis Giavitto. 2008. “Rule-based program-
ming for integrative biological modeling – Application to the modeling of the λ
phage genetic switch.” Natural Computing .
URL: http://dx.doi.org/10.1007/s11047-008-9105-9

Munkres, James. 1984. Elements of Algebraic Topology. Addison-Wesley.
Păun, Gheorghe. 2001. “From Cells to Computers: computing with membranes (P

systems).” Biosystems 59(3):139–158.
Prusinkiewicz, P., A. Lindenmayer, J. S. Hanan et al. 1990. The Algorithmic Beauty

of Plants. Springer-Verlag.
Prusinkiewicz, P. & J. Hanan. 1992. L systems: from formalism to programming

languages. In Lindenmayer Systems, Impacts on Theoretical Computer Science,
Computer Graphics and Developmental Biology, ed. G. Ronzenberg & A. Salomaa.
Springer Verlag pp. 193–211.

Shnerb, Nadav M, Yoram Louzoun, Eldad Bettelheim & Sorin Solomon. 2000. “The im-
portance of being discrete: Life always wins on the surface.” PNAS 97(19):10322–
10324.

Smith, G. D. 1985. Numerical solution of partial differential equations: finite difference
methods. Oxford Applied Mathematics and Computing series Oxford University
Press.

Smith, J.M. 1999. Shaping life: genes, embryos and evolution. Yale University Press.
Spicher, Antoine, Nazim Fats & Olivier Simonin. 2009. From Reactive Multi-Agents

Models to Cellular Automata. In International Conference on Agents and Artificial
Intelligence.

Spicher, Antoine & Olivier Michel. 2005. Using Rewriting Techniques in the Simulation
of Dynamical Systems: Application to the Modeling of Sperm Crawling. In Fifth
International Conference on Computational Science (ICCS’05), part I. Vol. 3514
of LNCS Atlanta, GA, USA: Springer pp. 820–827.

Spicher, Antoine & Olivier Michel. 2007. “Declarative modeling of a neurulation-like
process.” BioSystems 87(2-3):281–288.

Turing, A. M. 1952. “The Chemical Basis of Morphogenesis.” Phil. Trans. Roy. Soc.
of London Series B: Biological Sciences(237):37–72.

Turk, Greg. 1991. Generating textures for arbitrary surfaces using reaction-diffusion.
In Computer Graphics (SIGGRAPH ’91 Proceedings), ed. Thomas W. Sederberg.
Vol. 25 pp. 289–298.

Varela, Francisco J., Humberto R. Maturana & R. Uribe. 1974. “Autopoiesis: the
organization of living systems, its characterization and a model.” Autopoiesis: the
organization of living systems, its characterization and a model 5:187–196.

von Dassow, G., E. Meir, E.M. Munro & G.M. Odell. 2000. “The segment polarity
network is a robust developmental module.” Nature 406(6792):188–192.

Von Neumann, J. 1966. Theory of Self-Reproducing Automata. Univ. of Illinois Press.

Wolfram, S. 1986. Theory and applications of cellular automata. Advanced Series on
Complex Systems, Singapore: World Scientific Publication.

Woolridge, M. & M.J. Wooldridge. 2001. Introduction to multiagent systems. John
Wiley & Sons, Inc. New York, NY, USA.

Zhang, Xueying, Katrien De Cock, Mnica F. Bugallo & Petar M. Djuric. 2003. Stochas-
tic Simulation and Parameter Estimation of Enzyme Reaction Models. In IEEE
Workshop on Statistical Signal Processing.

A An MGS Implementation of the Runge-Kutta Methods

The Runge-Kutta methods is a famous and widely used family of integration scheme
for solving problems of the form:

∂X(t)

∂t
= f(X(t), t) X(0) = X0

They are based on the techniques developed by C. Runge and M.W. Kutta at the
beginning of the XXth.

In the following, we propose an MGS implementation of the classical explicit fourth
order Runge-Kutta method (RK4). This example can be extended to most of other
Runge-Kutta methods. As the Euler method, the RK4 allows the computation of a
sequence of vectors Xn with a more complex scheme reducing errors of approximations.
Starting from an initial state X0 at time t0, a step a the RK4 is given by

Xn+1 = Xn +
∆t

6
(k1 + 2k2 + 2k3 + k4) tn+1 = tn + ∆t

with

k1 = f(Xn, tn) k2 = f(Xn +
∆tk1

2
, tn +

∆t

2
)

k3 = f(Xn +
∆tk2

2
, tn +

∆t

2
) k4 = f(Xn + ∆tk3, tn + ∆t)

The MGS implementation can be divided into 3 steps:

1. the computation of expressions Xn + ck where c is a coefficient (either
∆t

2
or ∆t)

and k takes the value ki,
2. the computation of Xn+1 knowing the ki, and
3. the composition of the two first steps.

Steps (1) and (2) are straightforward and can be implemented as follows:

trans RK4a[c,k] = { x => x + c*k.(^x) }

trans RK4b[Dt,k1,k2,k3,k4] = {
x => x +

Dt

6
(k1.(^x) + 2*k2.(^x) + 2*k3.(^x) + k4.(^x))

}

These transformations apply the required computations on each coordinate of X. The
final step consists in implementing the function RK4:

fun RK4[Dt,f](X,t) = (

let k1 = f(X,t) in

let k2 = f(RK4a[c=
Dt

2
,k=k1](X),t+

Dt

2
) in

let k3 = f(RK4a[c=
Dt

2
,k=k2](X),t+

Dt

2
) in

let k4 = f(RK4a[c=Dt,k=k3](X),t+Dt) in

(RK4b[Dt=Dt,k1=k1,k2=k2,k3=k3,k4=k4](X),t+Dt)

)

